Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 


Elements of Pólya-Schur theory in the finite difference setting

Authors: Petter Brändén, Ilia Krasikov and Boris Shapiro
Journal: Proc. Amer. Math. Soc. 144 (2016), 4831-4843
MSC (2010): Primary 26C10; Secondary 30C15
Published electronically: April 19, 2016
MathSciNet review: 3544533
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Pólya-Schur theory describes the class of hyperbolicity preservers, i.e., the class of linear operators acting on univariate polynomials and preserving real-rootedness. We attempt to develop an analog of Pólya-Schur theory in the setting of linear finite difference operators. We study the class of linear finite difference operators preserving the set of real-rooted polynomials whose mesh (i.e., the minimal distance between the roots) is at least one. In particular, we prove a finite difference version of the classical Hermite-Poulain theorem and several results about discrete multiplier sequences.

References [Enhancements On Off] (What's this?)

  • [1] Julius Borcea and Petter Brändén, Pólya-Schur master theorems for circular domains and their boundaries, Ann. of Math. (2) 170 (2009), no. 1, 465-492. MR 2521123,
  • [2] J. Borcea and P. Brändén, Multivariate Pólya-Schur classification problems in the Weyl algebra, Proc. Lond. Math. Soc. (3) 101 (2010), no. 1, 73-104. MR 2661242,
  • [3] Francesco Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81 (1989), no. 413, viii+106. MR 963833,
  • [4] David A. Cardon, Extended Laguerre inequalities and a criterion for real zeros, Progress in analysis and its applications, World Sci. Publ., Hackensack, NJ, 2010, pp. 143-149. MR 2758000,
  • [5] Thomas Craven and George Csordas, Problems and theorems in the theory of multiplier sequences, Serdica Math. J. 22 (1996), no. 4, 515-524. MR 1483603
  • [6] Thomas Craven and George Csordas, Multiplier sequences for fields, Illinois J. Math. 21 (1977), no. 4, 801-817. MR 0568321
  • [7] Thomas Craven and George Csordas, Composition theorems, multiplier sequences and complex zero decreasing sequences, Value distribution theory and related topics, Adv. Complex Anal. Appl., vol. 3, Kluwer Acad. Publ., Boston, MA, 2004, pp. 131-166. MR 2173299,
  • [8] Matthew Chasse and George Csordas, Discrete analogues of the Laguerre inequalities and a conjecture of I. Krasikov, Ann. Sci. Math. Québec 36 (2012), no. 1, 77-91 (2013) (English, with English and French summaries). MR 3113292
  • [9] George Csordas and Richard S. Varga, Necessary and sufficient conditions and the Riemann hypothesis, Adv. in Appl. Math. 11 (1990), no. 3, 328-357. MR 1061423,
  • [10] David W. Farmer and Robert C. Rhoades, Differentiation evens out zero spacings, Trans. Amer. Math. Soc. 357 (2005), no. 9, 3789-3811. MR 2146650,
  • [11] S. Fisk, Polynomials, roots, and interlacing, arXiv:math/0612833v2.
  • [12] William H. Foster and Ilia Krasikov, Inequalities for real-root polynomials and entire functions, Adv. in Appl. Math. 29 (2002), no. 1, 102-114. MR 1921546,
  • [13] A. O. Gelfond, Calculus of finite differences. Translated from the Russian; International Monographs on Advanced Mathematics and Physics. Hindustan Publishing Corp., Delhi, 1971. MR 0342890
  • [14] Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2005. MR 2191786
  • [15] Olga Katkova, Boris Shapiro, and Anna Vishnyakova, Multiplier sequences and logarithmic mesh, C. R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 35-38 (English, with English and French summaries). MR 2755692,
  • [16] Ilia Krasikov, Discrete analogues of the Laguerre inequality, Anal. Appl. (Singap.) 1 (2003), no. 2, 189-197. MR 1976615,
  • [17] Nikola Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963 (German). MR 0164003
  • [18] Merrell L. Patrick, Some inequalities concerning Jacobi polynomials, SIAM J. Math. Anal. 2 (1971), 213-220. MR 0288330
  • [19] Merrell L. Patrick, Extensions of inequalities of the Laguerre and Turán type, Pacific J. Math. 44 (1973), 675-682. MR 0315176
  • [20] J. Schur and G. Pólya, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, J. Reine Angew. Math. 144 (1914), 89-113 (German). MR 1580897,
  • [21] Q. I. Rahman and G. Schmeisser, Analytic theory of polynomials, London Mathematical Society Monographs. New Series, vol. 26, The Clarendon Press, Oxford University Press, Oxford, 2002. MR 1954841
  • [22] A. Stoyanoff, Sur un theoreme de M Marcel Riesz, Nouvelles Annales de Mathematique 1 (1926), 97-99.
  • [23] G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), no. 1, 28-55 (German). MR 1544526,
  • [24] Gyula Sz.-Nagy, Über Polynome mit lauter reelen Nullstellen, Acta Math. Acad. Sci. Hungar. 1 (1950), 225-228 (German, with Russian summary). MR 0046479
  • [25] David G. Wagner, Total positivity of Hadamard products, J. Math. Anal. Appl. 163 (1992), no. 2, 459-483. MR 1145841,
  • [26] David G. Wagner, Zeros of reliability polynomials and $ f$-vectors of matroids, Combin. Probab. Comput. 9 (2000), no. 2, 167-190. MR 1762787,
  • [27] Peter Walker, Separation of the zeros of polynomials, Amer. Math. Monthly 100 (1993), no. 3, 272-273. MR 1212834,
  • [28] Peter Walker, Bounds for the separation of real zeros of polynomials, J. Austral. Math. Soc. Ser. A 59 (1995), no. 3, 330-342. MR 1355224

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26C10, 30C15

Retrieve articles in all journals with MSC (2010): 26C10, 30C15

Additional Information

Petter Brändén
Affiliation: Department of Mathematics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Ilia Krasikov
Affiliation: Department of Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, United Kingdom

Boris Shapiro
Affiliation: Department of Mathematics, Stockholm University, S-10691, Stockholm, Sweden

Keywords: Finite difference operators, hyperbolicity preservers, mesh
Received by editor(s): October 21, 2014
Received by editor(s) in revised form: September 30, 2015, and January 15, 2016
Published electronically: April 19, 2016
Communicated by: Walter Van Assche
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society