Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Characterizing $ \tau$-tilting finite algebras with radical square zero

Author: Takahide Adachi
Journal: Proc. Amer. Math. Soc. 144 (2016), 4673-4685
MSC (2010): Primary 16G20; Secondary 16G60
Published electronically: June 30, 2016
MathSciNet review: 3544519
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we give a characterization of $ \tau $-tilting finite algebras with radical square zero in terms of the separated quivers, which is an analog of a famous characterization of representation-finite algebras with radical square zero due to Gabriel.

References [Enhancements On Off] (What's this?)

  • [Ad] Takahide Adachi, The classification of $ \tau $-tilting modules over Nakayama algebras, J. Algebra 452 (2016), 227-262. MR 3461065,
  • [AAC] T. Adachi, T. Aihara, and A. Chan, Classification of two-term tilting complexes over Brauer graph algebras, arXiv:1504.04827.
  • [AIR] Takahide Adachi, Osamu Iyama, and Idun Reiten, $ \tau $-tilting theory, Compos. Math. 150 (2014), no. 3, 415-452. MR 3187626,
  • [AZ] M. Antipov, A. Zvonareva, Two-term partial tilting complexes over Brauer tree algebras, J. Math. Sci. (NY) 202 (2014), no. 3, 333-345.
  • [ASS] Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1: Techniques of representation theory, London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. MR 2197389
  • [ARS] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR 1314422
  • [AS] M. Auslander and Sverre O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2, 426-454. MR 617088,
  • [DIJ] L. Demonet, O. Iyama, G. Jasso, $ \tau $-tilting finite algebras and $ g$-vectors, arXiv:1503.00285.
  • [Ga] Peter Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71-103; correction, ibid. 6 (1972), 309 (German, with English summary). MR 0332887
  • [Ja] Gustavo Jasso, Reduction of $ \tau $-tilting modules and torsion pairs, Int. Math. Res. Not. IMRN 16 (2015), 7190-7237. MR 3428959,
  • [MPS] Piotr Malicki, José Antonio de la Peña, and Andrzej Skowroński, Finite cycles of indecomposable modules, J. Pure Appl. Algebra 219 (2015), no. 5, 1761-1799. MR 3299706,
  • [Mi] Yuya Mizuno, Classifying $ \tau $-tilting modules over preprojective algebras of Dynkin type, Math. Z. 277 (2014), no. 3-4, 665-690. MR 3229959,
  • [Sk] Andrzej Skowroński, Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120 (1994), no. 1, 19-26. MR 1156473,
  • [Yo] Tensho Yoshii, On algebras of bounded representation type, Osaka Math. J. 8 (1956), 51-105. MR 0081893
  • [Zh] X. Zhang, $ \tau $-rigid modules for algebras with radical square zero, arXiv:1211.5622.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 16G20, 16G60

Retrieve articles in all journals with MSC (2010): 16G20, 16G60

Additional Information

Takahide Adachi
Affiliation: Graduate School of Mathematics, Nagoya University, Frocho, Chikusaku, Nagoya, 464-8602, Japan

Received by editor(s): May 2, 2014
Received by editor(s) in revised form: January 18, 2016
Published electronically: June 30, 2016
Communicated by: Harm Derksen
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society