Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The visual angle metric and quasiregular maps

Authors: Gendi Wang and Matti Vuorinen
Journal: Proc. Amer. Math. Soc. 144 (2016), 4899-4912
MSC (2010): Primary 30C65; Secondary 30F45
Published electronically: June 17, 2016
MathSciNet review: 3544538
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The distortion of distances between points under maps is studied. We first prove a Schwarz-type lemma for quasiregular maps of the unit disk involving the visual angle metric. Then we investigate conversely the quasiconformality of a bilipschitz map with respect to the visual angle metric on convex domains. For the unit ball or half space, we prove that a bilipschitz map with respect to the visual angle metric is also bilipschitz with respect to the hyperbolic metric. We also obtain various inequalities relating the visual angle metric to other metrics such as the distance ratio metric and the quasihyperbolic metric.

References [Enhancements On Off] (What's this?)

  • [AG] S. B. Agard and F. W. Gehring, Angles and quasiconformal mappings, Proc. London Math. Soc. (3) 14a (1965), 1-21. MR 0178140
  • [AVV] Glen D. Anderson, Mavina K. Vamanamurthy, and Matti K. Vuorinen, Conformal invariants, inequalities, and quasiconformal maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1997. With 1 IBM-PC floppy disk (3.5 inch; HD); A Wiley-Interscience Publication. MR 1462077
  • [AVZ] Glen D. Anderson, Matti Vuorinen, and Xiaohui Zhang, Topics in special functions III, Analytic number theory, approximation theory, and special functions, Springer, New York, 2014, pp. 297-345. MR 3329241
  • [B] Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777
  • [BV] B. A. Bhayo and M. Vuorinen, On Mori's theorem for quasiconformal maps in the $ n$-space, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5703-5719. MR 2817405,
  • [GP] F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172-199. MR 0437753
  • [HIMPS] Peter Hästö, Zair Ibragimov, David Minda, Saminathan Ponnusamy, and Swadesh Sahoo, Isometries of some hyperbolic-type path metrics, and the hyperbolic medial axis, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, Amer. Math. Soc., Providence, RI, 2007, pp. 63-74. MR 2342807,
  • [K] Riku Klén, On hyperbolic type metrics, Ann. Acad. Sci. Fenn. Math. Diss. 152 (2009), 49. Dissertation, University of Turku, Turku, 2009. MR 2814337
  • [KLVW] Riku Klén, Henri Lindén, Matti Vuorinen, and Gendi Wang, The visual angle metric and Möbius transformations, Comput. Methods Funct. Theory 14 (2014), no. 2-3, 577-608. MR 3265380,
  • [KVZ] Riku Klén, Matti Vuorinen, and Xiaohui Zhang, Quasihyperbolic metric and Möbius transformations, Proc. Amer. Math. Soc. 142 (2014), no. 1, 311-322. MR 3119205,
  • [L] Henri Lindén, Quasihyperbolic geodesics and uniformity in elementary domains, Ann. Acad. Sci. Fenn. Math. Diss. 146 (2005), 50. Dissertation, University of Helsinki, Helsinki, 2005. MR 2183008
  • [MRV] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I No. 448 (1969), 40. MR 0259114
  • [Va1] Jussi Väisälä, The free quasiworld. Freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin, 1996) Banach Center Publ., vol. 48, Polish Acad. Sci., Warsaw, 1999, pp. 55-118. MR 1709974
  • [Va2] Jussi Väisälä, Lectures on $ n$-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009
  • [Vu1] Matti Vuorinen, Conformal invariants and quasiregular mappings, J. Analyse Math. 45 (1985), 69-115. MR 833408,
  • [Vu2] Matti Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Mathematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174
  • [VW] Matti Vuorinen and Gendi Wang, Bisection of geodesic segments in hyperbolic geometry, Complex analysis and dynamical systems V, Contemp. Math., vol. 591, Amer. Math. Soc., Providence, RI, 2013, pp. 273-290. MR 3155693,
  • [WZC] G.-D. Wang, X.-H. Zhang, and Y.- M. Chu, A Hölder mean inequality for the Hersch-Pfluger distortion function (in Chinese), Sci. Sin. Math. 40 (2010), 783-786.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30C65, 30F45

Retrieve articles in all journals with MSC (2010): 30C65, 30F45

Additional Information

Gendi Wang
Affiliation: School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China

Matti Vuorinen
Affiliation: Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland

Received by editor(s): May 4, 2015
Received by editor(s) in revised form: January 19, 2016
Published electronically: June 17, 2016
Additional Notes: The research of both authors was supported by the Academy of Finland, Project 2600066611
The first author was also supported by the Turku University Foundation, the Academy of Finland, Project 268009, and the Science Foundation of Zhejiang Sci-Tech University(ZSTU)
The authors thank Dr. Xiaohui Zhang for useful discussions and helpful comments and the referee for valuable corrections.
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society