Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

   
 
 

 

Lefschetz theorems for tamely ramified coverings


Authors: Hélène Esnault and Lars Kindler
Journal: Proc. Amer. Math. Soc. 144 (2016), 5071-5080
MSC (2010): Primary 14E20, 14E22
DOI: https://doi.org/10.1090/proc/13151
Published electronically: June 3, 2016
MathSciNet review: 3556253
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: As is well known, the Lefschetz theorems for the étale fundamental group of quasi-projective varieties do not hold. We fill a small gap in the literature showing they do for the tame fundamental group. Let $ X$ be a regular projective variety over a field $ k$, and let $ D\hookrightarrow X$ be a strict normal crossings divisor. Then, if $ Y$ is an ample regular hyperplane intersecting $ D$ transversally, the restriction functor from tame étale coverings of $ X\setminus D$ to those of $ Y\setminus D\cap Y$ is an equivalence if dimension $ X \ge 3$, and is fully faithful if dimension $ X=2$. The method is dictated by work of Grothendieck and Murre (1971). They showed that one can lift tame coverings from $ Y\setminus D\cap Y$ to the complement of $ D\cap Y$ in the formal completion of $ X$ along $ Y$. One has then to further lift to $ X\setminus D$.


References [Enhancements On Off] (What's this?)

  • [1] Vladimir Drinfeld, On a conjecture of Deligne, Mosc. Math. J. 12 (2012), no. 3, 515-542, 668 (English, with English and Russian summaries). MR 3024821
  • [2] Hélène Esnault and Moritz Kerz, A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Acta Math. Vietnam. 37 (2012), no. 4, 531-562. MR 3058662
  • [3] David Gieseker, Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), no. 1, 1-31. MR 0382271
  • [4] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724
  • [5] Alexander Grothendieck, Éléments de géométrie algébrique (rédigès avec la collaboration de Jean Dieudonné): I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. (1960), no. 4, 228. MR 0217083 (36 #177a)
  • [6] -, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas., Publ. Math. IHES 32 (1967).
  • [7] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques (Paris) [Mathematical Documents (Paris)], 4, Société Mathématique de France, Paris, 2005 (French). Séminaire de Géométrie Algébrique du Bois Marie, 1962; Augmenté d'un exposé de Michèle Raynaud [with an exposé by Michèle Raynaud]; with a preface and edited by Yves Laszlo; revised reprint of the 1968 French original. MR 2171939
  • [8] Alexander Grothendieck and Jacob P. Murre, The tame fundamental group of a formal neighbourhood of a divisor with normal crossings on a scheme, Lecture Notes in Mathematics, Vol. 208, Springer-Verlag, Berlin-New York, 1971. MR 0316453
  • [9] Shinya Harada and Toshiro Hiranouchi, Smallness of fundamental groups for arithmetic schemes, J. Number Theory 129 (2009), no. 11, 2702-2712. MR 2549526, https://doi.org/10.1016/j.jnt.2009.03.010
  • [10] Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
  • [11] Kiran S. Kedlaya, Good formal structures for flat meromorphic connections, II: excellent schemes, J. Amer. Math. Soc. 24 (2011), no. 1, 183-229. MR 2726603, https://doi.org/10.1090/S0894-0347-2010-00681-9
  • [12] Moritz Kerz and Shuji Saito, Lefschetz theorem for abelian fundamental group with modulus, Algebra Number Theory 8 (2014), no. 3, 689-701. MR 3218806, https://doi.org/10.2140/ant.2014.8.689
  • [13] Moritz Kerz and Alexander Schmidt, On different notions of tameness in arithmetic geometry, Math. Ann. 346 (2010), no. 3, 641-668. MR 2578565, https://doi.org/10.1007/s00208-009-0409-6
  • [14] Lars Kindler, Regular singular stratified bundles and tame ramification, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6461-6485. MR 3356944, https://doi.org/10.1090/S0002-9947-2014-06143-6
  • [15] Hideyuki Matsumura, Commutative algebra, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR 575344
  • [16] Michael Temkin, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math. 219 (2008), no. 2, 488-522. MR 2435647, https://doi.org/10.1016/j.aim.2008.05.006
  • [17] Paolo Valabrega, On the excellent property for power series rings over polynomial rings, J. Math. Kyoto Univ. 15 (1975), no. 2, 387-395. MR 0376677

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14E20, 14E22

Retrieve articles in all journals with MSC (2010): 14E20, 14E22


Additional Information

Hélène Esnault
Affiliation: FB Mathematik und Informatik, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany
Email: esnault@math.fu-berlin.de

Lars Kindler
Affiliation: Department of Mathematics, Harvard University, Science Center, One Oxford Street, Cambridge, Massachusetts 02138
Email: kindler@math.harvard.edu

DOI: https://doi.org/10.1090/proc/13151
Received by editor(s): October 3, 2015
Received by editor(s) in revised form: February 2, 2016
Published electronically: June 3, 2016
Additional Notes: The first author was supported by the Einstein Program.
The second author was supported by a research scholarship of the DFG (“Deutsche Forschungsgemeinschaft”).
Communicated by: Romyar T. Sharifi
Article copyright: © Copyright 2016 H. Esnault and L. Kindler

American Mathematical Society