Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Small generators of cocompact arithmetic Fuchsian groups


Authors: Michelle Chu and Han Li
Journal: Proc. Amer. Math. Soc. 144 (2016), 5121-5127
MSC (2010): Primary 20H10, 11F06
DOI: https://doi.org/10.1090/proc/13177
Published electronically: June 30, 2016
MathSciNet review: 3556258
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the study of Fuchsian groups, it is a nontrivial problem to determine a set of generators. Using a dynamical approach we construct for any cocompact arithmetic Fuchsian group a fundamental region in $ \mathbf {SL}_2(\mathbb{R})$ from which we determine a set of small generators.


References [Enhancements On Off] (What's this?)

  • [1] A. Page, Methodes explicites pour les groupes arithmétiques. Ph.D dissertation, Université de Bordeaux (2014).
  • [2] Valentin Blomer and Farrell Brumley, On the Ramanujan conjecture over number fields, Ann. of Math. (2) 174 (2011), no. 1, 581-605. MR 2811610, https://doi.org/10.4007/annals.2011.174.1.18
  • [3] Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485-535. MR 0147566
  • [4] Marc Burger and Viktor Schroeder, Volume, diameter and the first eigenvalue of locally symmetric spaces of rank one, J. Differential Geom. 26 (1987), no. 2, 273-284. MR 906391
  • [5] Ted Chinburg and Matthew Stover, Small generators for $ S$-unit groups of division algebras, New York J. Math. 20 (2014), 1175-1202. MR 3291615
  • [6] H. Jacquet and R. P. Langlands, Automorphic forms on $ {\rm GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
  • [7] Stefan Johansson, On fundamental domains of arithmetic Fuchsian groups, Math. Comp. 69 (2000), no. 229, 339-349. MR 1665958, https://doi.org/10.1090/S0025-5718-99-01167-9
  • [8] Dubi Kelmer and Lior Silberman, A uniform spectral gap for congruence covers of a hyperbolic manifold, Amer. J. Math. 135 (2013), no. 4, 1067-1085. MR 3086069, https://doi.org/10.1353/ajm.2013.0039
  • [9] Henry H. Kim, Functoriality for the exterior square of $ {\rm GL}_4$ and the symmetric fourth of $ {\rm GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139-183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203, https://doi.org/10.1090/S0894-0347-02-00410-1
  • [10] D. Y. Kleinbock and G. A. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces, Sinaĭ's Moscow Seminar on Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, vol. 171, Amer. Math. Soc., Providence, RI, 1996, pp. 141-172. MR 1359098
  • [11] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), no. 3, 461-479. MR 1503118, https://doi.org/10.2307/1968172
  • [12] Melissa L. Macasieb, Derived arithmetic Fuchsian groups of genus two, Experiment. Math. 17 (2008), no. 3, 347-369. MR 2455706
  • [13] Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957
  • [14] Carlos Matheus, Some quantitative versions of Ratner's mixing estimates, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 3, 469-488. MR 3124746, https://doi.org/10.1007/s00574-013-0022-x
  • [15] Walter D. Neumann and Alan W. Reid, Arithmetic of hyperbolic manifolds, Topology '90 (Columbus, OH, 1990) Ohio State Univ. Math. Res. Inst. Publ., vol. 1, de Gruyter, Berlin, 1992, pp. 273-310. MR 1184416
  • [16] Marina Ratner, The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems 7 (1987), no. 2, 267-288. MR 896798, https://doi.org/10.1017/S0143385700004004
  • [17] John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux 21 (2009), no. 2, 469-491 (English, with English and French summaries). MR 2541438
  • [18] Paul Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74 (1996), no. 1, 81-95. MR 1367580

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 20H10, 11F06

Retrieve articles in all journals with MSC (2010): 20H10, 11F06


Additional Information

Michelle Chu
Affiliation: Department of Mathematics, University of Texas at Austin, Austin, Texas 78750
Email: mchu@math.utexas.edu

Han Li
Affiliation: Department of Mathematics and Computer Sciences, Wesleyan University, Middletown, Connecticut 06457
Email: hli03@wesleyan.edu

DOI: https://doi.org/10.1090/proc/13177
Received by editor(s): February 8, 2015
Received by editor(s) in revised form: December 23, 2015, and February 23, 2016
Published electronically: June 30, 2016
Additional Notes: The first author was supported in part by NSF Grant DMS-1148490.
The second author was supported in part by an AMS Simons Travel Grant.
Communicated by: Nimish Shah
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society