Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Strict singularity of a Volterra-type integral operator on $ H^p$


Author: Santeri Miihkinen
Journal: Proc. Amer. Math. Soc. 145 (2017), 165-175
MSC (2010): Primary 47G10; Secondary 30H10
DOI: https://doi.org/10.1090/proc/13180
Published electronically: June 10, 2016
MathSciNet review: 3565369
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the Volterra-type integral operator

$\displaystyle T_gf(z) = \int _0^z f(\zeta )g'(\zeta )d\zeta , \quad z \in \mathbb{D},$

defined on the Hardy spaces $ H^p$ fixes an isomorphic copy of $ \ell ^p$ if it is not compact. In particular, the strict singularity of $ T_g$ coincides with its compactness on spaces $ H^p.$ As a consequence, we obtain a new proof for the equivalence of the compactness and the weak compactness of $ T_g$ on $ H^1$. Moreover, a non-compact $ T_g$ acting on the space $ BMOA$ fixes an isomorphic copy of $ c_0.$

References [Enhancements On Off] (What's this?)

  • [1] Alexandru Aleman, A class of integral operators on spaces of analytic functions, Topics in complex analysis and operator theory, Univ. Málaga, Málaga, 2007, pp. 3-30. MR 2394654
  • [2] Alexandru Aleman and Joseph A. Cima, An integral operator on $ H^p$ and Hardy's inequality, J. Anal. Math. 85 (2001), 157-176. MR 1869606, https://doi.org/10.1007/BF02788078
  • [3] Alexandru Aleman and Aristomenis G. Siskakis, An integral operator on $ H^p$, Complex Variables Theory Appl. 28 (1995), no. 2, 149-158. MR 1700079
  • [4] Alexandru Aleman and Aristomenis G. Siskakis, Integration operators on Bergman spaces, Indiana Univ. Math. J. 46 (1997), no. 2, 337-356. MR 1481594, https://doi.org/10.1512/iumj.1997.46.1373
  • [5] José Bonet, Paweł Domański, and Mikael Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Canad. Math. Bull. 42 (1999), no. 2, 139-148. MR 1692002, https://doi.org/10.4153/CMB-1999-016-x
  • [6] Daniel Girela, Analytic functions of bounded mean oscillation, Complex function spaces (Mekrijärvi, 1999) Univ. Joensuu Dept. Math. Rep. Ser., vol. 4, Univ. Joensuu, Joensuu, 2001, pp. 61-170. MR 1820090
  • [7] Francisco L. Hernández, Evgeny M. Semenov, and Pedro Tradacete, Strictly singular operators on $ L_p$ spaces and interpolation, Proc. Amer. Math. Soc. 138 (2010), no. 2, 675-686. MR 2557184, https://doi.org/10.1090/S0002-9939-09-10089-8
  • [8] N. J. Kalton, N. T. Peck, and James W. Roberts, An $ F$-space sampler, London Mathematical Society Lecture Note Series, vol. 89, Cambridge University Press, Cambridge, 1984. MR 808777
  • [9] Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322. MR 0107819
  • [10] Jussi Laitila, Santeri Miihkinen, and Pekka J. Nieminen, Essential norms and weak compactness of integration operators, Arch. Math. (Basel) 97 (2011), no. 1, 39-48. MR 2820586, https://doi.org/10.1007/s00013-011-0272-z
  • [11] J. Laitila, P. J. Nieminen, E. Saksman, and H.-O. Tylli, Structural rigidity of composition operators on $ {H}^p$, (forthcoming).
  • [12] M. V. Leĭbov, Subspaces of the space VMO, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 46 (1986), 51-54 (Russian); English transl., J. Soviet Math. 48 (1990), no. 5, 536-538. MR 865789, https://doi.org/10.1007/BF01095622
  • [13] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 0500056
  • [14] Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), no. 4, 591-602 (German). MR 0454017
  • [15] Aristomenis G. Siskakis, Volterra operators on spaces of analytic functions--a survey, Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 51-68. MR 2290748
  • [16] Aristomenis G. Siskakis and Ruhan Zhao, A Volterra type operator on spaces of analytic functions, Function spaces (Edwardsville, IL, 1998) Contemp. Math., vol. 232, Amer. Math. Soc., Providence, RI, 1999, pp. 299-311. MR 1678342, https://doi.org/10.1090/conm/232/03406
  • [17] L. Weis, On perturbations of Fredholm operators in $ L_{p}(\mu )$-spaces, Proc. Amer. Math. Soc. 67 (1977), no. 2, 287-292. MR 0467377
  • [18] P. Wojtaszczyk, The Banach space $ H_{1}$, Functional analysis: surveys and recent results, III (Paderborn, 1983), North-Holland Math. Stud., vol. 90, North-Holland, Amsterdam, 1984, pp. 1-33. MR 761370, https://doi.org/10.1016/S0304-0208(08)71464-6
  • [19] P. Wojtaszczyk, Banach spaces for analysts, Cambridge Studies in Advanced Mathematics, vol. 25, Cambridge University Press, Cambridge, 1991. MR 1144277
  • [20] Rikio Yoneda, Integration operators on weighted Bloch spaces, Nihonkai Math. J. 12 (2001), no. 2, 123-133. MR 1869743

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47G10, 30H10

Retrieve articles in all journals with MSC (2010): 47G10, 30H10


Additional Information

Santeri Miihkinen
Affiliation: Department of Mathematics and Statistics, University of Helsinki, Box 68, 00014 Helsinki, Finland
Email: santeri.miihkinen@helsinki.fi

DOI: https://doi.org/10.1090/proc/13180
Keywords: Volterra operator, integral operator, strict singularity, strictly singular, Hardy spaces
Received by editor(s): January 20, 2016
Received by editor(s) in revised form: March 1, 2016
Published electronically: June 10, 2016
Additional Notes: This research was supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research
Communicated by: Pamela B. Gorkin
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society