Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Gaussian estimates with best constants for higher-order Schrödinger operators with Kato potentials


Author: G. Barbatis
Journal: Proc. Amer. Math. Soc. 145 (2017), 191-200
MSC (2010): Primary 35K25
DOI: https://doi.org/10.1090/proc/13185
Published electronically: July 6, 2016
MathSciNet review: 3565372
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish Gaussian estimates on the heat kernel of a higher-order uniformly elliptic Schrödinger operator with variable highest order coefficients and with a Kato class potential. The estimates involve the sharp constant in the Gaussian exponent.


References [Enhancements On Off] (What's this?)

  • [1] Shmuel Agmon, Lectures on elliptic boundary value problems, AMS Chelsea Publishing, Providence, RI, 2010. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr.; Revised edition of the 1965 original. MR 2589244
  • [2] Shmuel Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $ N$-body Schrödinger operators, Mathematical Notes, vol. 29, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286
  • [3] Pascal Auscher and Philippe Tchamitchian, Square root problem for divergence operators and related topics, Astérisque 249 (1998), viii+172 (English, with English and French summaries). MR 1651262
  • [4] D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler geometry, Graduate Texts in Mathematics, vol. 200, Springer-Verlag, New York, 2000. MR 1747675
  • [5] G. Barbatis, On the approximation of Finsler metrics on Euclidean domains, Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 3, 589-609. MR 1721774, https://doi.org/10.1017/S001309150002054X
  • [6] G. Barbatis, Explicit estimates on the fundamental solution of higher-order parabolic equations with measurable coefficients, J. Differential Equations 174 (2001), no. 2, 442-463. MR 1846743, https://doi.org/10.1006/jdeq.2000.3940
  • [7] G. Barbatis and E. B. Davies, Sharp bounds on heat kernels of higher order uniformly elliptic operators, J. Operator Theory 36 (1996), no. 1, 179-198. MR 1417193
  • [8] Gerassimos Barbatis and Filippo Gazzola, Higher order linear parabolic equations, Recent trends in nonlinear partial differential equations. I. Evolution problems, Contemp. Math., vol. 594, Amer. Math. Soc., Providence, RI, 2013, pp. 77-97. MR 3155904, https://doi.org/10.1090/conm/594/11775
  • [9] Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
  • [10] E. B. Davies, Uniformly elliptic operators with measurable coefficients, J. Funct. Anal. 132 (1995), no. 1, 141-169. MR 1346221, https://doi.org/10.1006/jfan.1995.1103
  • [11] E. B. Davies, Limits on $ L^p$ regularity of self-adjoint elliptic operators, J. Differential Equations 135 (1997), no. 1, 83-102. MR 1434916, https://doi.org/10.1006/jdeq.1996.3219
  • [12] E. B. Davies, $ L^p$ spectral theory of higher-order elliptic differential operators, Bull. London Math. Soc. 29 (1997), no. 5, 513-546. MR 1458713, https://doi.org/10.1112/S002460939700324X
  • [13] E. B. Davies and A. M. Hinz, Kato class potentials for higher order elliptic operators, J. London Math. Soc. (2) 58 (1998), no. 3, 669-678. MR 1678156, https://doi.org/10.1112/S0024610798006565
  • [14] Qingquan Deng, Yong Ding, and Xiaohua Yao, Gaussian bounds for higher-order elliptic differential operators with Kato type potentials, J. Funct. Anal. 266 (2014), no. 8, 5377-5397. MR 3177340, https://doi.org/10.1016/j.jfa.2014.02.014
  • [15] A. F. M. ter Elst and Derek W. Robinson, High order divergence-form elliptic operators on Lie groups, Bull. Austral. Math. Soc. 55 (1997), no. 2, 335-348. MR 1438852, https://doi.org/10.1017/S0004972700034006
  • [16] M. A. Evgrafov and M. M. Postnikov, Asymptotic behavior of Green's functions for parabolic and elliptic equations with constant coefficients, Math. USSR Sbornik 11 (1970), 1-24
  • [17] S. Huang, M. Wang, Q. Zheng, and Z. Duan Z, $ L^p$ estimates for fractional Schrödinger operators with Kato class potentials, preprint 2015, arXiv:1511.08041
  • [18] Isao Miyadera, On perturbation theory for semi-groups of operators, Tôhoku Math. J. (2) 18 (1966), 299-310. MR 0209900
  • [19] Kyril Tintarev, Short time asymptotics for fundamental solutions of higher order parabolic equations, Comm. Partial Differential Equations 7 (1982), no. 4, 371-391. MR 652814, https://doi.org/10.1080/03605308208820227
  • [20] Jürgen Voigt, On the perturbation theory for strongly continuous semigroups, Math. Ann. 229 (1977), no. 2, 163-171. MR 0445335
  • [21] Quan Zheng and Xiaohua Yao, Higher-order Kato class potentials for Schrödinger operators, Bull. Lond. Math. Soc. 41 (2009), no. 2, 293-301. MR 2496505, https://doi.org/10.1112/blms/bdn125

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35K25

Retrieve articles in all journals with MSC (2010): 35K25


Additional Information

G. Barbatis
Affiliation: Department of Mathematics, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece
Email: gbarbatis@math.uoa.gr

DOI: https://doi.org/10.1090/proc/13185
Received by editor(s): December 7, 2015
Received by editor(s) in revised form: March 7, 2016
Published electronically: July 6, 2016
Communicated by: Joachim Krieger
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society