Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fokker-Planck and Kolmogorov backward equations for continuous time random walk scaling limits


Authors: Boris Baeumer and Peter Straka
Journal: Proc. Amer. Math. Soc. 145 (2017), 399-412
MSC (2010): Primary 60F17; Secondary 60G22
DOI: https://doi.org/10.1090/proc/13203
Published electronically: July 12, 2016
MathSciNet review: 3565391
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that the distributions of scaling limits of Continuous Time Random Walks (CTRWs) solve integro-differential equations akin to Fokker-Planck equations for diffusion processes. In contrast to previous such results, it is not assumed that the underlying process has absolutely continuous laws. Moreover, governing equations in the backward variables are derived. Three examples of anomalous diffusion processes illustrate the theory.


References [Enhancements On Off] (What's this?)

  • [1] David Applebaum, Lévy processes and stochastic calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cambridge, 2009. MR 2512800
  • [2] Boris Baeumer and Mark M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal. 4 (2001), no. 4, 481-500. MR 1874479
  • [3] Boris Baeumer, Mark M. Meerschaert, and Jeff Mortensen, Space-time fractional derivative operators, Proc. Amer. Math. Soc. 133 (2005), no. 8, 2273-2282. MR 2138870, https://doi.org/10.1090/S0002-9939-05-07949-9
  • [4] Emilia Grigorova Bajlekova, Fractional evolution equations in Banach spaces, Eindhoven University of Technology, Eindhoven, 2001. Dissertation, Technische Universiteit Eindhoven, Eindhoven, 2001. MR 1868564
  • [5] E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E (3) 61 (2000), no. 1, 132-138. MR 1736459, https://doi.org/10.1103/PhysRevE.61.132
  • [6] R. F. Bass, Uniqueness in law for pure jump Markov processes, Probab. Theory Related Fields 79 (1988), no. 2, 271-287. MR 958291, https://doi.org/10.1007/BF00320922
  • [7] Peter Becker-Kern, Mark M. Meerschaert, and Hans-Peter Scheffler, Limit theorems for coupled continuous time random walks, Ann. Probab. 32 (2004), no. 1B, 730-756. MR 2039941, https://doi.org/10.1214/aop/1079021462
  • [8] B. Berkowitz, A. Cortis, M. Dentz, and H. Scher, Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys. 44 (2):RG2003, 2006.
    ISSN 8755-1209. DOI 10.1029/2005RG000178.
  • [9] Jean Bertoin, Subordinators: examples and applications, Lectures on probability theory and statistics (Saint-Flour, 1997) Lecture Notes in Math., vol. 1717, Springer, Berlin, 1999, pp. 1-91. MR 1746300, https://doi.org/10.1007/978-3-540-48115-7_1
  • [10] Shai Carmi, Lior Turgeman, and Eli Barkai, On distributions of functionals of anomalous diffusion paths, J. Stat. Phys. 141 (2010), no. 6, 1071-1092. MR 2740404, https://doi.org/10.1007/s10955-010-0086-6
  • [11] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, Fractional diffusion in inhomogeneous media, J. Phys. A 38 (2005), no. 42, L679-L684. MR 2186196, https://doi.org/10.1088/0305-4470/38/42/L03
  • [12] S. Fedotov and S. Falconer, Subdiffusive master equation with space-dependent anomalous exponent and structural instability, Phys. Rev. E 85(3):031132, March 2012. DOI 10.1103/PhysRevE.85.031132.
  • [13] S. Fedotov and A. Iomin, Migration and proliferation dichotomy in tumor-cell invasion, Phys. Rev. Lett. 98:118101, 2007.
  • [14] Marjorie Hahn, Kei Kobayashi, and Sabir Umarov, SDEs driven by a time-changed Lévy process and their associated time-fractional order pseudo-differential equations, J. Theoret. Probab. 25 (2012), no. 1, 262-279. MR 2886388, https://doi.org/10.1007/s10959-010-0289-4
  • [15] B. I. Henry and S. L. Wearne, Fractional reaction-diffusion, Phys. A 276 (2000), no. 3-4, 448-455. MR 1780373, https://doi.org/10.1016/S0378-4371(99)00469-0
  • [16] B. Henry, T. Langlands, and P. Straka, Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces, Phys. Rev. Lett. 105(17):170602, 2010.
    DOI 10.1103/PhysRevLett.105.170602.
  • [17] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 1987. MR 959133
  • [18] A. Jurlewicz, P. Kern, M. M. Meerschaert, and H.-P. Scheffler, Fractional governing equations for coupled random walks, Comput. Math. Appl. 64 (2012), no. 10, 3021-3036. MR 2989331, https://doi.org/10.1016/j.camwa.2011.10.010
  • [19] J. Klafter and I. M. Sokolov, First steps in random walks, From tools to applications, Oxford University Press, Oxford, 2011. MR 2894872
  • [20] Kei Kobayashi, Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations, J. Theoret. Probab. 24 (2011), no. 3, 789-820. MR 2822482, https://doi.org/10.1007/s10959-010-0320-9
  • [21] V. N. Kolokoltsov, Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics, Teor. Veroyatn. Primen. 53 (2008), no. 4, 684-703 (Russian, with Russian summary); English transl., Theory Probab. Appl. 53 (2009), no. 4, 594-609. MR 2766141, https://doi.org/10.1137/S0040585X97983857
  • [22] Vassili N. Kolokoltsov, Markov processes, semigroups and generators, de Gruyter Studies in Mathematics, vol. 38, Walter de Gruyter & Co., Berlin, 2011. MR 2780345
  • [23] T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005), no. 2, 719-736. MR 2135000, https://doi.org/10.1016/j.jcp.2004.11.025
  • [24] T. A. M. Langlands and B. I. Henry, Fractional chemotaxis diffusion equations, Phys. Rev. E (3) 81 (2010), no. 5, 051102, 12. MR 2736241, https://doi.org/10.1103/PhysRevE.81.051102
  • [25] Marcin Magdziarz, Janusz Gajda, and Tomasz Zorawik, Comment on fractional Fokker-Planck equation with space and time dependent drift and diffusion, J. Stat. Phys. 154 (2014), no. 5, 1241-1250. MR 3176407, https://doi.org/10.1007/s10955-014-0919-9
  • [26] Mark M. Meerschaert and Hans-Peter Scheffler, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab. 41 (2004), no. 3, 623-638. MR 2074812
  • [27] Mark M. Meerschaert and Hans-Peter Scheffler, Triangular array limits for continuous time random walks, Stochastic Process. Appl. 118 (2008), no. 9, 1606-1633. MR 2442372, https://doi.org/10.1016/j.spa.2007.10.005
  • [28] Mark M. Meerschaert and Alla Sikorskii, Stochastic models for fractional calculus, de Gruyter Studies in Mathematics, vol. 43, Walter de Gruyter & Co., Berlin, 2012. MR 2884383
  • [29] Mark M. Meerschaert and Peter Straka, Semi-Markov approach to continuous time random walk limit processes, Ann. Probab. 42 (2014), no. 4, 1699-1723. MR 3262490, https://doi.org/10.1214/13-AOP905
  • [30] Ralf Metzler and Joseph Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77. MR 1809268, https://doi.org/10.1016/S0370-1573(00)00070-3
  • [31] Erkan Nane and Yinan Ni, Stochastic solution of fractional Fokker-Planck equations with space-time-dependent coefficients, J. Math. Anal. Appl. 442 (2016), no. 1, 103-116. MR 3498320, https://doi.org/10.1016/j.jmaa.2016.03.033
  • [32] R. M. Neupauer and J. L. Wilson, Adjoint method for obtaining backward-in-time location and travel time probabilities of a conservative groundwater contaminant, Water Resour. Res. 35(11):3389-3398, Nov. 1999. DOI 10.1029/1999WR900190.
  • [33] R. S. Phillips, The adjoint semi-group, Pacific J. Math. 5 (1955), 269-283. MR 0070976
  • [34] Jan Prüss, Evolutionary integral equations and applications, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 1993. [2012] reprint of the 1993 edition. MR 2964432
  • [35] M. Raberto, E. Scalas, and F. Mainardi, Waiting-times and returns in high-frequency financial data: an empirical study, Phys. A Stat. Mech. Appl. 314(1-4):749-755, Nov. 2002. DOI 10.1016/S0378-4371(02)01048-8.
  • [36] Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • [37] R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res. 39(10), Oct. 2003. DOI 10.1029/2003WR002141.
  • [38] I. M. Sokolov and J. Klafter, Field-induced dispersion in subdiffusion. Phys. Rev. Lett. 97(14):1-4, Oct. 2006.
    ISSN 0031-9007.
    DOI 10.1103/PhysRevLett.97.140602.
    URL http://link.aps.org/doi/10.1103/PhysRevLett.97.140602.
  • [39] P. Straka and B. I. Henry, Lagging and leading coupled continuous time random walks, renewal times and their joint limits, Stochastic Process. Appl. 121 (2011), no. 2, 324-336. MR 2746178, https://doi.org/10.1016/j.spa.2010.10.003
  • [40] Sabir Umarov, Introduction to fractional pseudo-differential equations with singular symbols, Developments in Mathematics, vol. 41, Springer, Cham, 2015. MR 3381285
  • [41] A. Weron and M. Magdziarz, Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation,Phys. Rev. E 77(3):1-6, Mar. 2008.
    ISSN 1539-3755.
    DOI 10.1103/PhysRevE.77.036704.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 60F17, 60G22

Retrieve articles in all journals with MSC (2010): 60F17, 60G22


Additional Information

Boris Baeumer
Affiliation: Department of Mathematics & Statistics, University of Otago, North Dunedin, Dunedin 9016, New Zealand
Email: bbaeumer@maths.otago.ac.nz

Peter Straka
Affiliation: School of Mathematics and Statistics, University of New South Wales Australia, Sydney, NSW 2052, Australia
Email: p.straka@unsw.edu.au

DOI: https://doi.org/10.1090/proc/13203
Keywords: Anomalous diffusion, fractional kinetics, fractional derivative, subordination, coupled random walks
Received by editor(s): December 12, 2014
Received by editor(s) in revised form: February 26, 2016, and March 16, 2016
Published electronically: July 12, 2016
Communicated by: Mark M. Meerschaert
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society