Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Distribution of complex algebraic numbers


Authors: Friedrich Götze, Dzianis Kaliada and Dmitry Zaporozhets
Journal: Proc. Amer. Math. Soc. 145 (2017), 61-71
MSC (2010): Primary 11N45; Secondary 11C08
DOI: https://doi.org/10.1090/proc/13208
Published electronically: July 7, 2016
MathSciNet review: 3565360
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a region $ \Omega \subset \mathbb{C}$ denote by $ \Psi (Q;\Omega )$ the number of complex algebraic numbers in $ \Omega $ of degree $ \leq n$ and naive height $ \leq Q$. We show that

$\displaystyle \Psi (Q;\Omega )=\frac {Q^{n+1}}{2\zeta (n+1)}\int _\Omega \psi (z)\,\nu (dz)+O\left (Q^n \right ),\quad Q\to \infty , $

where $ \nu $ is the Lebesgue measure on the complex plane and the function $ \psi $ will be given explicitly.

References [Enhancements On Off] (What's this?)

  • [1] P. Bachmann, Die analytische Zahlentheorie, vol. 2, BG Teubner, Leipzig, 1894.
  • [2] V. Beresnevich, On approximation of real numbers by real algebraic numbers, Acta Arith. 90 (1999), no. 2, 97-112. MR 1709049
  • [3] Victor Beresnevich, Vasili Bernik, and Friedrich Götze, The distribution of close conjugate algebraic numbers, Compos. Math. 146 (2010), no. 5, 1165-1179. MR 2684299, https://doi.org/10.1112/S0010437X10004860
  • [4] V. I. Bernik and D. V. Vasilev, A Khinchin-type theorem for integer-valued polynomials of a complex variable, Proceedings of the Institute of Mathematics, Vol. 3 (Russian), Tr. Inst. Mat. (Minsk), vol. 3, Natl. Akad. Nauk Belarusi, Inst. Mat., Minsk, 1999, pp. 10-20 (Russian, with English summary). MR 1722676
  • [5] N. V. Budarina and F. Goetze, Distance between conjugate algebraic numbers in clusters, Math. Notes 94 (2013), no. 5-6, 816-819. Translation of Mat. Zametki 94 (2013), no. 5, 780-783. MR 3227020, https://doi.org/10.1134/S0001434613110151
  • [6] Yann Bugeaud and Maurice Mignotte, On the distance between roots of integer polynomials, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 3, 553-556. MR 2096618, https://doi.org/10.1017/S0013091503000257
  • [7] Yann Bugeaud and Maurice Mignotte, Polynomial root separation, Int. J. Number Theory 6 (2010), no. 3, 587-602. MR 2652896, https://doi.org/10.1142/S1793042110003083
  • [8] Yann Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge University Press, Cambridge, 2004. MR 2136100
  • [9] Yann Bugeaud and Andrej Dujella, Root separation for irreducible integer polynomials, Bull. Lond. Math. Soc. 43 (2011), no. 6, 1239-1244. MR 2861545, https://doi.org/10.1112/blms/bdr085
  • [10] Yann Bugeaud and Andrej Dujella, Root separation for reducible integer polynomials, Acta Arith. 162 (2014), no. 4, 393-403. MR 3181149, https://doi.org/10.4064/aa162-4-6
  • [11] Shey-Jey Chern and Jeffrey D. Vaaler, The distribution of values of Mahler's measure, J. Reine Angew. Math. 540 (2001), 1-47. MR 1868596, https://doi.org/10.1515/crll.2001.084
  • [12] H. Davenport, On a principle of Lipschitz, J. London Math. Soc. 26 (1951), 179-183. MR 0043821
  • [13] P. Erdös and P. Turán, On the distribution of roots of polynomials, Ann. of Math. (2) 51 (1950), 105-119. MR 0033372
  • [14] Jan-Hendrik Evertse, Distances between the conjugates of an algebraic number, Publ. Math. Debrecen 65 (2004), no. 3-4, 323-340. MR 2107951
  • [15] F. Götze, D. Kaliada, and D. Zaporozhets, Correlation functions of real zeros of random polynomials, Preprint, arXiv:1510.00025 (2015).
  • [16] -, Correlations between real conjugate algebraic numbers, Chebyshevskii Sb. 16 (2015), no. 4, 90-99.
  • [17] F. Götze and D. Zaporozhets, Discriminant and root separation of integral polynomials, Preprint, arXiv:1407.6388 (2014).
  • [18] Ildar Ibragimov and Dmitry Zaporozhets, On distribution of zeros of random polynomials in complex plane, Prokhorov and contemporary probability theory, Springer Proc. Math. Stat., vol. 33, Springer, Heidelberg, 2013, pp. 303-323. MR 3070481, https://doi.org/10.1007/978-3-642-33549-5_18
  • [19] D. Kaliada, Distribution of real algebraic numbers of the second degree, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk (2013), no. 3, 54-63, (In Russian).
  • [20] -, On the density function of the distribution of real algebraic numbers, Preprint, arXiv:1405.1627 (2014).
  • [21] D. V. Koleda, On the asymptotics of the distribution of algebraic numbers for growth of their height, Chebyshevskiĭ Sb. 16 (2015), no. 1(53), 191-204 (Russian, with English and Russian summaries). MR 3408931
  • [22] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605
  • [23] David Masser and Jeffrey D. Vaaler, Counting algebraic numbers with large height. II, Trans. Amer. Math. Soc. 359 (2007), no. 1, 427-445 (electronic). MR 2247898, https://doi.org/10.1090/S0002-9947-06-04115-8
  • [24] David Masser and Jeffrey D. Vaaler, Counting algebraic numbers with large height. I, Diophantine approximation, Dev. Math., vol. 16, SpringerWienNewYork, Vienna, 2008, pp. 237-243. MR 2487698, https://doi.org/10.1007/978-3-211-74280-8_14
  • [25] Igor E. Pritsker, Distribution of algebraic numbers, J. Reine Angew. Math. 657 (2011), 57-80. MR 2824783, https://doi.org/10.1515/CRELLE.2011.049
  • [26] Hans Rademacher, Lectures on elementary number theory, Robert E. Krieger Publishing Co., Huntington, N.Y., 1977. Reprint of the 1964 original. MR 0491421
  • [27] Olivier Ramaré, From explicit estimates for primes to explicit estimates for the Möbius function, Acta Arith. 157 (2013), no. 4, 365-379. MR 3019422, https://doi.org/10.4064/aa157-4-4
  • [28] D. I. Šparo and M. G. Šur, On the distribution of roots of random polynomials, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1962 (1962), no. 3, 40-43 (Russian, with English summary). MR 0139199
  • [29] M. M. Skriganov, Ergodic theory on $ {\rm SL}(n)$, Diophantine approximations and anomalies in the lattice point problem, Invent. Math. 132 (1998), no. 1, 1-72. MR 1618631, https://doi.org/10.1007/s002220050217
  • [30] K. Soundararajan, Partial sums of the Möbius function, J. Reine Angew. Math. 631 (2009), 141-152. MR 2542220, https://doi.org/10.1515/CRELLE.2009.044
  • [31] B. L. van der Waerden, Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt, Monatsh. Math. Phys. 43 (1936), no. 1, 133-147 (German). MR 1550517, https://doi.org/10.1007/BF01707594
  • [32] D. N. Zaporozhets, On the distribution of the number of real roots of a random polynomial, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 320 (2004), no. Veroyatn. i Stat. 8, 69-79, 227 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N. Y.) 137 (2006), no. 1, 4525-4530. MR 2115866, https://doi.org/10.1007/s10958-006-0245-0

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11N45, 11C08

Retrieve articles in all journals with MSC (2010): 11N45, 11C08


Additional Information

Friedrich Götze
Affiliation: Department of Mathematics, Bielefeld University, P.O. Box 10 01 31, 33501 Bielefeld, Germany
Email: goetze@math.uni-bielefeld.de

Dzianis Kaliada
Affiliation: Institute of Mathematics, National Academy of Sciences of Belarus, Surganova Str 11, 220072 Minsk, Belarus
Email: koledad@rambler.ru

Dmitry Zaporozhets
Affiliation: St. Petersburg Department of Steklov Institute of Mathematics, Fontanka 27, 191011 St. Petersburg, Russia
Email: zap1979@gmail.com

DOI: https://doi.org/10.1090/proc/13208
Keywords: Algebraic numbers, distribution of algebraic numbers, integral polynomials
Received by editor(s): October 16, 2015
Received by editor(s) in revised form: March 17, 2016
Published electronically: July 7, 2016
Additional Notes: This research was supported by CRC 701, Bielefeld University (Germany).
Communicated by: Matthew A. Papanikolas
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society