Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mehler-Heine asymptotics for multiple orthogonal polynomials


Author: Walter Van Assche
Journal: Proc. Amer. Math. Soc. 145 (2017), 303-314
MSC (2010): Primary 33C45, 42C05
DOI: https://doi.org/10.1090/proc/13214
Published electronically: July 12, 2016
MathSciNet review: 3565381
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Mehler-Heine asymptotics describe the behavior of orthogonal
polynomials near the edges of the interval where the orthogonality measure is supported. For Jacobi polynomials and Laguerre polynomials this asymptotic behavior near the hard edge involves Bessel functions $ J_\alpha $. We show that the asymptotic behavior near the endpoint of the interval of (one of) the measures for multiple orthogonal polynomials involves a generalization of the Bessel function. The multiple orthogonal polynomials considered are Jacobi-Angelesco polynomials, Jacobi-Piñeiro polynomials, multiple Laguerre polynomials, multiple orthogonal polynomials associated with modified Bessel functions (of the first and second kind), and multiple orthogonal polynomials associated with Meijer $ G$-functions.


References [Enhancements On Off] (What's this?)

  • [1] A. I. Aptekarev, A. Branquinho, and W. Van Assche, Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc. 355 (2003), no. 10, 3887-3914. MR 1990569, https://doi.org/10.1090/S0002-9947-03-03330-0
  • [2] Youssèf Ben Cheikh and Khalfa Douak, On two-orthogonal polynomials related to the Bateman's $ J_n^{u,v}$-function, Methods Appl. Anal. 7 (2000), no. 4, 641-662. MR 1868550, https://doi.org/10.4310/MAA.2000.v7.n4.a3
  • [3] Els Coussement and Walter Van Assche, Some properties of multiple orthogonal polynomials associated with Macdonald functions, Proceedings of the Fifth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Patras, 1999), 2001, pp. 253-261. MR 1858284, https://doi.org/10.1016/S0377-0427(00)00648-8
  • [4] Els Coussement and Walter Van Assche, Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind, Constr. Approx. 19 (2003), no. 2, 237-263. MR 1957385, https://doi.org/10.1007/s00365-002-0499-9
  • [5] Els Coussement and Walter Van Assche, Asymptotics of multiple orthogonal polynomials associated with the modified Bessel functions of the first kind, Proceedings of the Sixth International Symposium on Orthogonal Polynomials, Special Functions and their Applications (Rome, 2001), 2003, pp. 141-149. MR 1985686, https://doi.org/10.1016/S0377-0427(02)00596-4
  • [6] P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann-Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. (2) 137 (1993), no. 2, 295-368. MR 1207209, https://doi.org/10.2307/2946540
  • [7] Klaas Deschout and Arno B. J. Kuijlaars, Double scaling limit for modified Jacobi-Angelesco polynomials, Notions of positivity and the geometry of polynomials, Trends Math., Birkhäuser/Springer Basel AG, Basel, 2011, pp. 115-161. MR 3051164, https://doi.org/10.1007/978-3-0348-0142-3_8
  • [8] K. Deschout and A. B. J. Kuijlaars, Critical behavior in Angelesco ensembles, J. Math. Phys. 53 (2012), no. 12, 123523, 21. MR 3405913, https://doi.org/10.1063/1.4769822
  • [9] Khalfa Douak, On $ 2$-orthogonal polynomials of Laguerre type, Int. J. Math. Math. Sci. 22 (1999), no. 1, 29-48. MR 1684357, https://doi.org/10.1155/S0161171299220297
  • [10] Mourad E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, vol. 98, Cambridge University Press, Cambridge, 2009. With two chapters by Walter Van Assche; With a foreword by Richard A. Askey; Reprint of the 2005 original. MR 2542683
  • [11] Arno B. J. Kuijlaars, Riemann-Hilbert analysis for orthogonal polynomials, Orthogonal polynomials and special functions (Leuven, 2002) Lecture Notes in Math., vol. 1817, Springer, Berlin, 2003, pp. 167-210. MR 2022855, https://doi.org/10.1007/3-540-44945-0_5
  • [12] Arno B. J. Kuijlaars, Multiple orthogonal polynomial ensembles, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., vol. 507, Amer. Math. Soc., Providence, RI, 2010, pp. 155-176. MR 2647568, https://doi.org/10.1090/conm/507/09958
  • [13] A. B. J. Kuijlaars, K. T.-R. McLaughlin, W. Van Assche, and M. Vanlessen, The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on $ [-1,1]$, Adv. Math. 188 (2004), no. 2, 337-398. MR 2087231, https://doi.org/10.1016/j.aim.2003.08.015
  • [14] Arno B. J. Kuijlaars and Lun Zhang, Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits, Comm. Math. Phys. 332 (2014), no. 2, 759-781. MR 3257662, https://doi.org/10.1007/s00220-014-2064-3
  • [15] NIST handbook of mathematical functions, edited by Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert and Charles W. Clark, with 1 CD-ROM (Windows, Macintosh and UNIX), U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. MR 2723248
  • [16] V. N. Sorokin, Generalization of classical orthogonal polynomials and convergence of simultaneous Padé approximants, Trudy Sem. Petrovsk. 11 (1986), 125-165, 245, 247 (Russian, with English summary); English transl., J. Soviet Math. 45 (1989), no. 6, 1461-1499. MR 834171, https://doi.org/10.1007/BF01097274
  • [17] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Providence RI, 1939 (fourth edition, 1975, MR0372517).
  • [18] Tomohiro Takata, Asymptotic formulae of Mehler-Heine-type for certain classical polyorthogonal polynomials, J. Approx. Theory 135 (2005), no. 2, 160-175. MR 2158528, https://doi.org/10.1016/j.jat.2005.04.005
  • [19] Tomohiro Takata, Certain multiple orthogonal polynomials and a discretization of the Bessel equation, J. Math. Kyoto Univ. 49 (2009), no. 4, 747-769. MR 2591115
  • [20] D. N. Tulyakov, Difference schemes with power-growth bases perturbed by the spectral parameter, Mat. Sb. 200 (2009), no. 5, 129-158 (Russian, with Russian summary); English transl., Sb. Math. 200 (2009), no. 5-6, 753781. MR 2541225, https://doi.org/10.1070/SM2009v200n05ABEH004018
  • [21] Walter Van Assche, Jeffrey S. Geronimo, and Arno B. J. Kuijlaars, Riemann-Hilbert problems for multiple orthogonal polynomials, Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, pp. 23-59. MR 2006283, https://doi.org/10.1007/978-94-010-0818-1_2
  • [22] W. Van Assche and S. B. Yakubovich, Multiple orthogonal polynomials associated with Macdonald functions, Integral Transform. Spec. Funct. 9 (2000), no. 3, 229-244. MR 1782974, https://doi.org/10.1080/10652460008819257
  • [23] M. Vanlessen, Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory, Constr. Approx. 25 (2007), no. 2, 125-175. MR 2283495, https://doi.org/10.1007/s00365-005-0611-z
  • [24] R. Wong and Y.-Q. Zhao, Smoothing of Stokes's discontinuity for the generalized Bessel function, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1984, 1381-1400. MR 1701756, https://doi.org/10.1098/rspa.1999.0365
  • [25] E. Maitland Wright, The Asymptotic Expansion of the Generalized Bessel Function, Proc. London Math. Soc. S2-38, no. 1, 257. MR 1576315, https://doi.org/10.1112/plms/s2-38.1.257

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 33C45, 42C05

Retrieve articles in all journals with MSC (2010): 33C45, 42C05


Additional Information

Walter Van Assche
Affiliation: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Box 2400, BE 3001 Leuven, Belgium
Email: walter@wis.kuleuven.be

DOI: https://doi.org/10.1090/proc/13214
Keywords: Multiple orthogonal polynomials, Mehler-Heine asymptotics
Received by editor(s): August 26, 2014
Received by editor(s) in revised form: March 20, 2016, and March 24, 2016
Published electronically: July 12, 2016
Additional Notes: This research was supported by KU Leuven Research Grant OT/12/073, FWO Research Grant G.0934.13 and the Belgian Interuniversity Attraction Poles Programme P7/18.
Communicated by: Mourad Ismail
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society