Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some universality results for dynamical systems


Authors: Udayan B. Darji and Étienne Matheron
Journal: Proc. Amer. Math. Soc. 145 (2017), 251-265
MSC (2010): Primary 37B99, 54H20; Secondary 54C20, 47A99
DOI: https://doi.org/10.1090/proc/13225
Published electronically: July 12, 2016
MathSciNet review: 3565377
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove some ``universality'' results for topological dynamical systems. In particular, we show that for any continuous self-map $ T$ of a perfect Polish space, one can find a dense, $ T$-invariant set homeomorphic to the Baire space $ \mathbb{N}^{\mathbb{N}}$; that there exists a bounded linear operator $ U: \ell \rightarrow \ell $ such that any linear operator $ T$ from a separable Banach space into itself with $ \Vert T\Vert \leq 1$ is a linear factor of $ U$; and that given any $ \sigma $-compact family $ {\mathcal F}$ of continuous self-maps of a compact metric space, there is a continuous self-map $ U_{\mathcal F}$ of $ \mathbb{N}^{\mathbb{N}}$ such that each $ T\in {\mathcal F}$ is a factor of $ U_{\mathcal F}$.


References [Enhancements On Off] (What's this?)

  • [1] Bohuslav Balcar and Petr Simon, Appendix on general topology, Handbook of Boolean algebras, Vol. 3, North-Holland, Amsterdam, 1989, pp. 1239-1267. MR 991618
  • [2] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Václav Zizler, Banach space theory, The basis for linear and nonlinear analysis, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, New York, 2011. MR 2766381
  • [3] Eli Glasner and Benjamin Weiss, Minimal actions of the group $ \mathbb{S}(\mathbb{Z})$ of permutations of the integers, Geom. Funct. Anal. 12 (2002), no. 5, 964-988. MR 1937832, https://doi.org/10.1007/PL00012651
  • [4] Eli Glasner and Benjamin Weiss, The universal minimal system for the group of homeomorphisms of the Cantor set, Fund. Math. 176 (2003), no. 3, 277-289. MR 1992824, https://doi.org/10.4064/fm176-3-6
  • [5] Trevor Irwin and Sławomir Solecki, Projective Fraïssé limits and the pseudo-arc, Trans. Amer. Math. Soc. 358 (2006), no. 7, 3077-3096 (electronic). MR 2216259, https://doi.org/10.1090/S0002-9947-06-03928-6
  • [6] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
  • [7] Alexander S. Kechris, Vladimir G. Pestov, and Stevo Todorcevic, Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal. 15 (2005), no. 1, 106-189. MR 2140630, https://doi.org/10.1007/s00039-005-0503-1
  • [8] Petr Kůrka, Topological and symbolic dynamics, Cours Spécialisés [Specialized Courses], vol. 11, Société Mathématique de France, Paris, 2003. MR 2041676
  • [9] Wayne Lewis, The pseudo-arc, Bol. Soc. Mat. Mexicana (3) 5 (1999), no. 1, 25-77. MR 1692467
  • [10] Wayne Lewis, Most maps of the pseudo-arc are homeomorphisms, Proc. Amer. Math. Soc. 91 (1984), no. 1, 147-154. MR 735582, https://doi.org/10.2307/2045287
  • [11] Martino Lupini, Fraïssé limits in functional analysis. Preprint (2015), available on arXiv.
  • [12] Julien Melleray, Lionel Nguyen van Thé, and Todor Tsankov, Polish groups with metrizable universal minimal flow. Int. Math. Res. Not., to appear.
  • [13] Vladimir G. Pestov, On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4149-4165. MR 1608494, https://doi.org/10.1090/S0002-9947-98-02329-0
  • [14] Vladimir Pestov, Dynamics of infinite-dimensional groups, The Ramsey-Dvoretzky-Milman phenomenon; Revised edition of Dynamics of infinite-dimensional groups and Ramsey-type phenomena [Inst. Mat. Pura. Apl. (IMPA), Rio de Janeiro, 2005; MR2164572], University Lecture Series, vol. 40, American Mathematical Society, Providence, RI, 2006. MR 2277969
  • [15] Vladimir Uspenskij, On universal minimal compact $ G$-spaces, Proceedings of the 2000 Topology and Dynamics Conference (San Antonio, TX), 2000, pp. Spring, 301-308. MR 1875600
  • [16] Klaus Weihrauch, Computability, EATCS Monographs on Theoretical Computer Science, vol. 9, Springer-Verlag, Berlin, 1987. MR 892102

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37B99, 54H20, 54C20, 47A99

Retrieve articles in all journals with MSC (2010): 37B99, 54H20, 54C20, 47A99


Additional Information

Udayan B. Darji
Affiliation: Department of Mathematics, University of Louisville, Louisville, Kentucky 40292
Email: ubdarj01@louisville.edu

Étienne Matheron
Affiliation: Laboratoire de Mathématiques de Lens, Université d’Artois, Rue Jean Souvraz S. P. 18, 62307 Lens, France
Email: etienne.matheron@univ-artois.fr

DOI: https://doi.org/10.1090/proc/13225
Keywords: Universal, factor, $\ell_1$, Cantor space, Baire space
Received by editor(s): December 3, 2015
Received by editor(s) in revised form: March 16, 2016
Published electronically: July 12, 2016
Additional Notes: The first author would like to acknowledge the hospitality and financial support of Université d’Artois
Communicated by: Mirna Džamonja
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society