Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Cohomological decomposition of compact complex manifolds and holomorphic deformations


Authors: Adela Latorre and Luis Ugarte
Journal: Proc. Amer. Math. Soc. 145 (2017), 335-353
MSC (2010): Primary 32G05, 53C15, 53C56, 58A12, 22E25
DOI: https://doi.org/10.1090/proc/13244
Published electronically: August 1, 2016
MathSciNet review: 3565385
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main goal of this note is the study of pureness and fullness properties of compact complex manifolds under holomorphic deformations. Firstly, we construct small deformations of pure-and-full complex manifolds along which one of these properties is lost while the other one is preserved. Secondly, we show that the property of being pure-and-full is not closed under holomorphic deformations. In order to do so, we focus on the class of 6-dimensional solvmanifolds endowed with invariant complex structures. In the special case of nilmanifolds, we also give a classification of those invariant complex structures that are both pure and full. In addition, relations of the cohomological decomposition with other metric and complex properties are studied.


References [Enhancements On Off] (What's this?)

  • [1] Daniele Angella, The cohomologies of the Iwasawa manifold and of its small deformations, J. Geom. Anal. 23 (2013), no. 3, 1355-1378. MR 3078358, https://doi.org/10.1007/s12220-011-9291-z
  • [2] Daniele Angella, Cohomological aspects in complex non-Kähler geometry, Lecture Notes in Mathematics, vol. 2095, Springer, Cham, 2014. MR 3137419
  • [3] Daniele Angella, Maria Giovanna Franzini, and Federico Alberto Rossi, Degree of non-Kählerianity for 6-dimensional nilmanifolds, Manuscripta Math. 148 (2015), no. 1-2, 177-211. MR 3377754, https://doi.org/10.1007/s00229-015-0734-x
  • [4] D. Angella and H. Kasuya, Cohomologies of deformations of solvmanifolds and closedness of some properties, to appear in Mathematica Universalis (episciences-math).
  • [5] Daniele Angella and Adriano Tomassini, On cohomological decomposition of almost-complex manifolds and deformations, J. Symplectic Geom. 9 (2011), no. 3, 403-428. MR 2817781
  • [6] Daniele Angella and Adriano Tomassini, On the cohomology of almost-complex manifolds, Internat. J. Math. 23 (2012), no. 2, 1250019, 25. MR 2890470, https://doi.org/10.1142/S0129167X11007604
  • [7] Daniele Angella and Adriano Tomassini, On the $ \partial \overline {\partial }$-lemma and Bott-Chern cohomology, Invent. Math. 192 (2013), no. 1, 71-81. MR 3032326, https://doi.org/10.1007/s00222-012-0406-3
  • [8] Daniele Angella, Adriano Tomassini, and Weiyi Zhang, On cohomological decomposability of almost-Kähler structures, Proc. Amer. Math. Soc. 142 (2014), no. 10, 3615-3630. MR 3238437, https://doi.org/10.1090/S0002-9939-2014-12049-1
  • [9] M. Ceballos, A. Otal, L. Ugarte, and R. Villacampa, Invariant complex structures on 6-nilmanifolds: classification, Frölicher spectral sequence and special Hermitian metrics, J. Geom. Anal. 26 (2016), no. 1, 252-286. MR 3441513, https://doi.org/10.1007/s12220-014-9548-4
  • [10] Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245-274. MR 0382702
  • [11] S. K. Donaldson, Two-forms on four-manifolds and elliptic equations, inspired by S. S. Chern, Nankai Tracts Math., vol. 11, World Sci. Publ., Hackensack, NJ, 2006, pp. 153-172. MR 2313334, https://doi.org/10.1142/9789812772688_0007
  • [12] Tedi Draghici, Tian-Jun Li, and Weiyi Zhang, Symplectic forms and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. IMRN 1 (2010), 1-17. MR 2576281, https://doi.org/10.1093/imrn/rnp113
  • [13] Tedi Draghici, Tian-Jun Li, and Weiyi Zhang, On the $ J$-anti-invariant cohomology of almost complex 4-manifolds, Q. J. Math. 64 (2013), no. 1, 83-111. MR 3032090, https://doi.org/10.1093/qmath/har034
  • [14] Nicola Enrietti, Anna Fino, and Luigi Vezzoni, Tamed symplectic forms and strong Kähler with torsion metrics, J. Symplectic Geom. 10 (2012), no. 2, 203-223. MR 2926995
  • [15] Anna Fino, Antonio Otal, and Luis Ugarte, Six-dimensional solvmanifolds with holomorphically trivial canonical bundle, Int. Math. Res. Not. IMRN 24 (2015), 13757-13799. MR 3436163
  • [16] Anna Fino and Adriano Tomassini, On some cohomological properties of almost complex manifolds, J. Geom. Anal. 20 (2010), no. 1, 107-131. MR 2574723, https://doi.org/10.1007/s12220-009-9098-3
  • [17] Richard Hind, Costantino Medori, and Adriano Tomassini, On taming and compatible symplectic forms, J. Geom. Anal. 25 (2015), no. 4, 2360-2374. MR 3427128
  • [18] Adela Latorre, Luis Ugarte, and Raquel Villacampa, On the Bott-Chern cohomology and balanced Hermitian nilmanifolds, Internat. J. Math. 25 (2014), no. 6, 1450057, 24. MR 3225581, https://doi.org/10.1142/S0129167X14500578
  • [19] Tian-Jun Li and Weiyi Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. Geom. 17 (2009), no. 4, 651-683. MR 2601348, https://doi.org/10.4310/CAG.2009.v17.n4.a4
  • [20] M. L. Michelsohn, On the existence of special metrics in complex geometry, Acta Math. 149 (1982), no. 3-4, 261-295. MR 688351, https://doi.org/10.1007/BF02392356
  • [21] Iku Nakamura, Complex parallelisable manifolds and their small deformations, J. Differential Geometry 10 (1975), 85-112. MR 0393580
  • [22] Dan Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics, Invent. Math. 194 (2013), no. 3, 515-534. MR 3127061, https://doi.org/10.1007/s00222-013-0449-0
  • [23] Dan Popovici, Deformation openness and closedness of various classes of compact complex manifolds; examples, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), no. 2, 255-305. MR 3235516
  • [24] S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3, 311-333. MR 1812058, https://doi.org/10.1016/S0022-4049(00)00033-5
  • [25] Jeffrey Streets and Gang Tian, A parabolic flow of pluriclosed metrics, Int. Math. Res. Not. IMRN 16 (2010), 3101-3133. MR 2673720, https://doi.org/10.1093/imrn/rnp237
  • [26] Luis Ugarte, Hermitian structures on six-dimensional nilmanifolds, Transform. Groups 12 (2007), no. 1, 175-202. MR 2308035, https://doi.org/10.1007/s00031-005-1134-1
  • [27] Chun-Chun Wu, On the geometry of superstrings with torsion, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Harvard University, 2006. MR 2708755

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32G05, 53C15, 53C56, 58A12, 22E25

Retrieve articles in all journals with MSC (2010): 32G05, 53C15, 53C56, 58A12, 22E25


Additional Information

Adela Latorre
Affiliation: Departamento de Matemáticas-I.U.M.A., Universidad de Zaragoza, Campus Plaza San Francisco, 50009 Zaragoza, Spain
Email: adela@unizar.es

Luis Ugarte
Affiliation: Departamento de Matemáticas-I.U.M.A., Universidad de Zaragoza, Campus Plaza San Francisco, 50009 Zaragoza, Spain
Email: ugarte@unizar.es

DOI: https://doi.org/10.1090/proc/13244
Keywords: De Rham cohomology, complex structure, solvmanifold, holomorphic deformation
Received by editor(s): October 6, 2015
Received by editor(s) in revised form: April 5, 2016
Published electronically: August 1, 2016
Communicated by: Franc Forstneric
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society