Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Relations on $ \overline{\mathcal{M}}_{g,n}$ via orbifold stable maps


Author: Emily Clader
Journal: Proc. Amer. Math. Soc. 145 (2017), 11-21
MSC (2010): Primary 14H10
DOI: https://doi.org/10.1090/proc/13344
Published electronically: September 15, 2016
MathSciNet review: 3565356
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the equivariant virtual cycle of the moduli space of stable maps to $ [\mathbb{C}/\mathbb{Z}_r]$, or equivalently, the vanishing of high-degree Chern classes of a certain vector bundle over the moduli space of stable maps to $ B\mathbb{Z}_r$, we derive relations in the Chow ring of $ \overline {\mathcal {M}}_{g,n}(B\mathbb{Z}_r,0)$. These push forward to yield tautological relations on $ \overline {\mathcal {M}} _{g,n}$.


References [Enhancements On Off] (What's this?)

  • [1] Dan Abramovich and Angelo Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), no. 1, 27-75 (electronic). MR 1862797, https://doi.org/10.1090/S0894-0347-01-00380-0
  • [2] R. Cavalieri,
    Hurwitz theory and the double ramification cycle,
    arXiv: 1410.8550.
  • [3] Alessandro Chiodo, Stable twisted curves and their $ r$-spin structures, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 5, 1635-1689 (English, with English and French summaries). MR 2445829
  • [4] Alessandro Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and $ r$th roots, Compos. Math. 144 (2008), no. 6, 1461-1496. MR 2474317, https://doi.org/10.1112/S0010437X08003709
  • [5] A. Chiodo and G. Farkas,
    Singularities of the moduli space of level curves,
    J. Eur. Math. Soc., to appear.
  • [6] Alessandro Chiodo and Yongbin Ruan, Landau-Ginzburg/Calabi-Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), no. 1, 117-165. MR 2672282, https://doi.org/10.1007/s00222-010-0260-0
  • [7] A. Chiodo and D. Zvonkine, Twisted $ r$-spin potential and Givental's quantization, Adv. Theor. Math. Phys. 13 (2009), no. 5, 1335-1369. MR 2672465
  • [8] E. Clader and F. Janda,
    Pixton's double ramification cycle relations,
    arXiv:1601.02871.
  • [9] Tom Coates and Alexander Givental, Quantum Riemann-Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), no. 1, 15-53. MR 2276766, https://doi.org/10.4007/annals.2007.165.15
  • [10] Carel Faber, Algorithms for computing intersection numbers on moduli spaces of curves, with an application to the class of the locus of Jacobians, New trends in algebraic geometry (Warwick, 1996) London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press, Cambridge, 1999, pp. 93-109. MR 1714822, https://doi.org/10.1017/CBO9780511721540.006
  • [11] Carel Faber, A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Aspects Math., E33, Vieweg, Braunschweig, 1999, pp. 109-129. MR 1722541
  • [12] C. Faber and R. Pandharipande, Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 13-49. MR 2120989, https://doi.org/10.4171/JEMS/20
  • [13] Huijun Fan, Tyler Jarvis, and Yongbin Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), no. 1, 1-106. MR 3043578, https://doi.org/10.4007/annals.2013.178.1.1
  • [14] E. Getzler, Topological recursion relations in genus $ 2$, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997) World Sci. Publ., River Edge, NJ, 1998, pp. 73-106. MR 1672112
  • [15] E. Getzler, Intersection theory on $ \overline {\mathcal {M}}_{1,4}$ and elliptic Gromov-Witten invariants, J. Amer. Math. Soc. 10 (1997), no. 4, 973-998. MR 1451505, https://doi.org/10.1090/S0894-0347-97-00246-4
  • [16] Alexander B. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001), no. 4, 551-568, 645 (English, with English and Russian summaries). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. MR 1901075
  • [17] Alexander B. Givental, Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices 23 (2001), 1265-1286. MR 1866444, https://doi.org/10.1155/S1073792801000605
  • [18] Eleny-Nicoleta Ionel, Topological recursive relations in $ H^{2g}(\mathcal {M}_{g,n})$, Invent. Math. 148 (2002), no. 3, 627-658. MR 1908062, https://doi.org/10.1007/s002220100205
  • [19] Eleny-Nicoleta Ionel, Relations in the tautological ring of $ \mathcal {M}_g$, Duke Math. J. 129 (2005), no. 1, 157-186. MR 2155060, https://doi.org/10.1215/S0012-7094-04-12916-1
  • [20] F. Janda,
    Comparing tautological relations from the equivariant Gromov-Witten theory of projective spaces and spin structures,
    arXiv: 1407.4778.
  • [21] F. Janda,
    Relations in the tautological ring and Frobenius manifolds near the discriminant,
    arXiv: 1505.03419.
  • [22] F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine.
    Double ramification cycles on the moduli spaces of curves,
    arXiv:1602.04705.
  • [23] Paul Johnson, Equivariant GW theory of stacky curves, Comm. Math. Phys. 327 (2014), no. 2, 333-386. MR 3183403, https://doi.org/10.1007/s00220-014-2021-1
  • [24] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525-562. MR 1291244
  • [25] Kefeng Liu and Hao Xu, Computing top intersections in the tautological ring of $ \mathcal {M}_g$, Math. Z. 270 (2012), no. 3-4, 819-837. MR 2892926, https://doi.org/10.1007/s00209-010-0828-9
  • [26] Xiaobo Liu and Rahul Pandharipande, New topological recursion relations, J. Algebraic Geom. 20 (2011), no. 3, 479-494. MR 2786663, https://doi.org/10.1090/S1056-3911-2010-00559-0
  • [27] Eduard Looijenga, On the tautological ring of $ {\mathcal {M}}_g$, Invent. Math. 121 (1995), no. 2, 411-419. MR 1346214, https://doi.org/10.1007/BF01884306
  • [28] A. Marian, D. Oprea, R. Pandharipande, A. Pixton, and D. Zvonkine,
    The Chern character of the Verlinde bundle over $ {M}_{g,n}$,
    arXiv: 1311.3028, 2014.
  • [29] David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 271-328. MR 717614
  • [30] R. Pandharipande and A. Pixton,
    Relations in the tautological ring of the moduli space of curves,
    arXiv: 1301.4561.
  • [31] Rahul Pandharipande, Aaron Pixton, and Dimitri Zvonkine, Relations on $ \overline {\mathcal {M}}_{g,n}$ via $ 3$-spin structures, J. Amer. Math. Soc. 28 (2015), no. 1, 279-309. MR 3264769, https://doi.org/10.1090/S0894-0347-2014-00808-0
  • [32] A. Pixton,
    Conjectural relations in the tautological ring of $ \overline {M}_{g,n}$,
    arXiv: 1207.1918.
  • [33] Aaron Pixton, The tautological ring of the moduli space of curves, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)-Princeton University. MR 3153424
  • [34] Constantin Teleman, The structure of 2D semi-simple field theories, Invent. Math. 188 (2012), no. 3, 525-588. MR 2917177, https://doi.org/10.1007/s00222-011-0352-5
  • [35] B. Toen, Théorèmes de Riemann-Roch pour les champs de Deligne-Mumford, $ K$-Theory 18 (1999), no. 1, 33-76 (French, with English and French summaries). MR 1710187, https://doi.org/10.1023/A:1007791200714
  • [36] Hsian-Hua Tseng, Orbifold quantum Riemann-Roch, Lefschetz and Serre, Geom. Topol. 14 (2010), no. 1, 1-81. MR 2578300, https://doi.org/10.2140/gt.2010.14.1
  • [37] Stephanie Yang, Intersection numbers on $ \overline {\mathcal {M}}_{g,n}$, J. Softw. Algebra Geom. 2 (2010), 1-5. MR 2881127, https://doi.org/10.2140/jsag.2010.2.1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14H10

Retrieve articles in all journals with MSC (2010): 14H10


Additional Information

Emily Clader
Affiliation: Department of Mathematics, San Francisco State University, Thornton Hall 937, 1600 Holloway Avenue, San Francisco, CA 94132
Email: eclader@sfsu.edu

DOI: https://doi.org/10.1090/proc/13344
Received by editor(s): March 2, 2016
Published electronically: September 15, 2016
Additional Notes: This work was partially supported by FRG grant DMS-1159265, RTG grant DMS-1045119, Dr. Max Rössler, the Walter Haefner Foundation, and the ETH Zürich Foundation.
Communicated by: Lev Borisov
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society