Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Potential theoretic approach to Schauder estimates for the fractional Laplacian


Authors: Claudia Bucur and Aram L. Karakhanyan
Journal: Proc. Amer. Math. Soc. 145 (2017), 637-651
MSC (2010): Primary 26A33, 35R11
DOI: https://doi.org/10.1090/proc/13227
Published electronically: July 26, 2016
MathSciNet review: 3577867
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present an elementary approach for the proof of Schauder estimates for the equation $ (-\Delta )^s u(x)=f(x), \,0<s<1$, with $ f$ having a modulus of continuity $ \omega _f$, based on the Poisson representation formula and dyadic ball approximation argument. We give the explicit modulus of continuity of $ u$ in balls $ B_r(x)\subset \mathbb{R}^n$ in terms of $ \omega _f$.


References [Enhancements On Off] (What's this?)

  • [1] Claudia Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal. 15 (2016), no. 2, 657-699. MR 3461641, https://doi.org/10.3934/cpaa.2016.15.657
  • [2] Claudia Bucur and Enrico Valdinoci,
    Nonlocal diffusion and applications,
    preprint, arXiv:1504.08292, 2015.
    To appear in the Springer series ``Unione Matematica Italiana''.
  • [3] Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the $ 2$-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495-1533. MR 1304437
  • [4] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. MR 2944369, https://doi.org/10.1016/j.bulsci.2011.12.004
  • [5] Lars Diening and Stefan G. Samko, On potentials in generalized Hölder spaces over uniform domains in $ \mathbb{R}^n$, Rev. Mat. Complut. 24 (2011), no. 2, 357-373. MR 2806350, https://doi.org/10.1007/s13163-010-0043-6
  • [6] Hongjie Dong and Doyoon Kim, Schauder estimates for a class of non-local elliptic equations, Discrete Contin. Dyn. Syst. 33 (2013), no. 6, 2319-2347. MR 3007688, https://doi.org/10.3934/dcds.2013.33.2319
  • [7] Bartłomiej Dyda, Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fract. Calc. Appl. Anal. 15 (2012), no. 4, 536-555. MR 2974318, https://doi.org/10.2478/s13540-012-0038-8
  • [8] Mouhamed Moustapha Fall, Entire $ s$-harmonic functions are affine, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2587-2592. MR 3477075, https://doi.org/10.1090/proc/13021
  • [9] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
  • [10] N. S. Landkof, Foundations of modern potential theory, translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. MR 0350027
  • [11] Xavier Ros-Oton and Joaquim Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. (9) 101 (2014), no. 3, 275-302 (English, with English and French summaries). MR 3168912, https://doi.org/10.1016/j.matpur.2013.06.003
  • [12] Raffaella Servadei and Enrico Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), no. 1, 133-154. MR 3161511
  • [13] Luis Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112. MR 2270163, https://doi.org/10.1002/cpa.20153
  • [14] Xu-Jia Wang, Schauder estimates for elliptic and parabolic equations, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 637-642. MR 2273802, https://doi.org/10.1007/s11401-006-0142-3
  • [15] Victor Iosifovich Yudovich,
    Non-stationary flows of an ideal incompressible fluid.
    Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 3 (1963), no. 6, 1032-1066.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 26A33, 35R11

Retrieve articles in all journals with MSC (2010): 26A33, 35R11


Additional Information

Claudia Bucur
Affiliation: Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini, 50, 20100, Milano, Italy
Email: claudia.bucur@unimi.it

Aram L. Karakhanyan
Affiliation: Maxwell Institute for Mathematical Sciences and School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
Email: aram.karakhanyan@ed.ac.uk

DOI: https://doi.org/10.1090/proc/13227
Received by editor(s): February 15, 2016
Received by editor(s) in revised form: March 31, 2016
Published electronically: July 26, 2016
Additional Notes: The research of the second author was partially supported by an EPSRC grant
Communicated by: Joachim Krieger
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society