Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A short proof of Toruńczyk's characterization theorems


Authors: Jan J. Dijkstra, Michael Levin and Jan van Mill
Journal: Proc. Amer. Math. Soc. 145 (2017), 901-914
MSC (2010): Primary 57N20
DOI: https://doi.org/10.1090/proc/13262
Published electronically: September 8, 2016
MathSciNet review: 3577890
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present short proofs of Toruńczyk's well-known characterization theorems of the Hilbert cube and Hilbert space, respectively.


References [Enhancements On Off] (What's this?)

  • [1] S. M. Ageev, Axiomatic method of partitions in the theory of Nöbeling spaces. II. An unknotting theorem, Mat. Sb. 198 (2007), no. 5, 3-32 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 5-6, 597-625. MR 2354284, https://doi.org/10.1070/SM2007v198n05ABEH003851
  • [2] S. M. Ageev, The axiomatic partition method in the theory of Nöbeling spaces. I. Improving partition connectivity, Mat. Sb. 198 (2007), no. 3, 3-50 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 3-4, 299-342. MR 2354278, https://doi.org/10.1070/SM2007v198n03ABEH003838
  • [3] S. M. Ageev, Axiomatic method of partitions in the theory of Nöbeling spaces. III. Consistency of the system of axioms, Mat. Sb. 198 (2007), no. 7, 3-30 (Russian, with Russian summary); English transl., Sb. Math. 198 (2007), no. 7-8, 909-934. MR 2354531, https://doi.org/10.1070/SM2007v198n07ABEH003866
  • [4] R. D. Anderson and John D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283-289. MR 0258064
  • [5] R. D. Anderson and T. A. Chapman, Extending homeomorphisms to Hilbert cube manifolds, Pacific J. Math. 38 (1971), 281-293. MR 0319204
  • [6] Mladen Bestvina, Characterizing $ k$-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (1988), no. 380, vi+110. MR 920964, https://doi.org/10.1090/memo/0380
  • [7] Mladen Bestvina, Philip Bowers, Jerzy Mogilski, and John Walsh, Characterization of Hilbert space manifolds revisited, Topology Appl. 24 (1986), no. 1-3, 53-69. Special volume in honor of R. H. Bing (1914-1986). MR 872478, https://doi.org/10.1016/0166-8641(86)90049-0
  • [8] Philip L. Bowers, Dense embeddings of sigma-compact, nowhere locally compact metric spaces, Proc. Amer. Math. Soc. 95 (1985), no. 1, 123-130. MR 796460, https://doi.org/10.2307/2045587
  • [9] T. A. Chapman, On the structure of Hilbert cube manifolds, Compositio Math. 24 (1972), 329-353. MR 0305432
  • [10] T. A. Chapman, Lectures on Hilbert cube manifolds, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. MR 0423357
  • [11] A. Chigogidze, Inverse spectra, North-Holland Mathematical Library, vol. 53, North-Holland Publishing Co., Amsterdam, 1996. MR 1406565
  • [12] Robert D. Edwards, Characterizing infinite-dimensional manifolds topologically (after Henryk Toruńczyk), Séminaire Bourbaki (1978/79), Lecture Notes in Math., vol. 770, Springer, Berlin-New York, 1980, pp. Exp. No. 540, pp. 278-302. MR 572429
  • [13] William E. Haver, Mappings between $ {\rm ANR}$s that are fine homotopy equivalences, Pacific J. Math. 58 (1975), no. 2, 457-461. MR 0385865
  • [14] Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
  • [15] Michael Levin, A $ Z$-set unknotting theorem for Nöbeling spaces, Fund. Math. 202 (2009), no. 1, 1-41. MR 2457483, https://doi.org/10.4064/fm202-1-1
  • [16] M. Levin, Characterizing Nöbeling spaces, (2006), arXiv:math/0602361.
  • [17] J. van Mill, Infinite-dimensional topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR 977744
  • [18] R. T. Miller, Mapping cylinder neighborhoods of some ANR's, Ann. of Math. (2) 103 (1976), no. 2, 417-427. MR 0402757
  • [19] Andrzej Nagórko, Characterization and topological rigidity of Nöbeling manifolds, Mem. Amer. Math. Soc. 223 (2013), no. 1048, viii+92. MR 3088246, https://doi.org/10.1090/S0065-9266-2012-00643-5
  • [20] H. Toruńczyk, On $ {\rm CE}$-images of the Hilbert cube and characterization of $ Q$-manifolds, Fund. Math. 106 (1980), no. 1, 31-40. MR 585543
  • [21] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981), no. 3, 247-262. MR 611763
  • [22] H. Toruńczyk, A correction of two papers concerning Hilbert manifolds: ``Concerning locally homotopy negligible sets and characterization of $ l_2$-manifolds'' [Fund. Math. 101 (1978), no. 2, 93-110; MR0518344 (80g:57019)] and ``Characterizing Hilbert space topology'' [ibid. 111 (1981), no. 3, 247-262; MR0611763 (82i:57016)], Fund. Math. 125 (1985), no. 1, 89-93. MR 813992
  • [23] John J. Walsh, Characterization of Hilbert cube manifolds: an alternate proof, Geometric and algebraic topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 153-160. MR 925862
  • [24] James E. West, Mapping Hilbert cube manifolds to ANR's: a solution of a conjecture of Borsuk, Ann. of Math. (2) 106 (1977), no. 1, 1-18. MR 0451247

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57N20

Retrieve articles in all journals with MSC (2010): 57N20


Additional Information

Jan J. Dijkstra
Affiliation: PO Box 1180, Crested Butte, Colorado 81224
Email: jan.dijkstra1@gmail.com

Michael Levin
Affiliation: Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be’er Sheva 84105, Irael
Email: mlevine@math.bgu.ac.il

Jan van Mill
Affiliation: KdV Institute for Mathematics, University of Amsterdam, Science Park 904, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
Email: j.vanMill@uva.nl

DOI: https://doi.org/10.1090/proc/13262
Keywords: Hilbert cube, Hilbert space, resolution
Received by editor(s): July 3, 2014
Received by editor(s) in revised form: July 10, 2015, and April 25, 2016
Published electronically: September 8, 2016
Additional Notes: The second author was supported in part by a grant from the Netherlands Organization for Scientific Research (NWO) and ISF grants 836/08 and 522/14.
Communicated by: Martin Scharlemann
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society