Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Birch's lemma over global function fields


Authors: Yi Ouyang and Shenxing Zhang
Journal: Proc. Amer. Math. Soc. 145 (2017), 577-584
MSC (2010): Primary 11G05; Secondary 11D25, 11G40
DOI: https://doi.org/10.1090/proc/13265
Published electronically: October 24, 2016
MathSciNet review: 3577862
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a function field version of Birch's Lemma, which reveals non-torsion points in quadratic twists of an elliptic curve over a global function field, where the quadratic twists have many prime factors. The proof uses Brown's Euler system of Heegner points over function fields and a result of Vigni on the ring class eigenspaces of Mordell-Weil groups in positive characteristic.


References [Enhancements On Off] (What's this?)

  • [B1] M. L. Brown, On a conjecture of Tate for elliptic surfaces over finite fields, Proc. London Math. Soc. (3) 69 (1994), no. 3, 489-514. MR 1289861, https://doi.org/10.1112/plms/s3-69.3.489
  • [B2] M. L. Brown, Heegner modules and elliptic curves, Lecture Notes in Mathematics, vol. 1849, Springer-Verlag, Berlin, 2004. MR 2082815
  • [CLTZ] John Coates, Yongxiong Li, Ye Tian, and Shuai Zhai, Quadratic twists of elliptic curves, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 357-394. MR 3335282, https://doi.org/10.1112/plms/pdu059
  • [G] Ernst-Ulrich Gekeler, Drinfeld modular curves, Lecture Notes in Mathematics, vol. 1231, Springer-Verlag, Berlin, 1986. MR 874338
  • [GR] E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld modular curves, J. Reine Angew. Math. 476 (1996), 27-93. MR 1401696, https://doi.org/10.1515/crll.1996.476.27
  • [H] David R. Hayes, Explicit class field theory in global function fields, Studies in algebra and number theory, Adv. in Math. Suppl. Stud., vol. 6, Academic Press, New York-London, 1979, pp. 173-217. MR 535766
  • [P] Mihran Papikian, On the degree of modular parametrizations over function fields, J. Number Theory 97 (2002), no. 2, 317-349. MR 1942964, https://doi.org/10.1016/S0022-314X(02)00016-1
  • [S] Andreas Schweizer, Hyperelliptic Drinfeld modular curves, Drinfeld modules, modular schemes and applications (Alden-Biesen, 1996), World Sci. Publ., River Edge, NJ, 1997, pp. 330-343. MR 1630612
  • [T] John Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1995, pp. Exp. No. 306, 415-440. MR 1610977
  • [U] Douglas Ulmer, Elliptic curves and analogies between number fields and function fields, Heegner points and Rankin $ L$-series, Math. Sci. Res. Inst. Publ., vol. 49, Cambridge Univ. Press, Cambridge, 2004, pp. 285-315. MR 2083216, https://doi.org/10.1017/CBO9780511756375.011
  • [V] Stefano Vigni, On ring class eigenspaces of Mordell-Weil groups of elliptic curves over global function fields, J. Number Theory 128 (2008), no. 7, 2159-2184. MR 2423756, https://doi.org/10.1016/j.jnt.2007.11.007
  • [WY] Fu-Tsun Wei and Jing Yu, On the independence of Heegner points in the function field case, J. Number Theory 130 (2010), no. 11, 2542-2560. MR 2678861, https://doi.org/10.1016/j.jnt.2010.05.006

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11G05, 11D25, 11G40

Retrieve articles in all journals with MSC (2010): 11G05, 11D25, 11G40


Additional Information

Yi Ouyang
Affiliation: Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Email: yiouyang@ustc.edu.cn

Shenxing Zhang
Affiliation: Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China – and – Morningside Center of Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
Email: zsxqq@mail.ustc.edu.cn

DOI: https://doi.org/10.1090/proc/13265
Received by editor(s): December 16, 2015
Received by editor(s) in revised form: April 21, 2016, and April 30, 2016
Published electronically: October 24, 2016
Communicated by: Romyar T. Sharifi
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society