Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On sharpness of the local Kato-smoothing property for dispersive wave equations


Authors: Shu-Ming Sun, Emmanuel Trélat, Bing-Yu Zhang and Ning Zhong
Journal: Proc. Amer. Math. Soc. 145 (2017), 653-664
MSC (2010): Primary 35B65, 35Q53, 35Q55
DOI: https://doi.org/10.1090/proc/13286
Published electronically: August 5, 2016
MathSciNet review: 3577868
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Constantin and Saut showed in 1988 that solutions of the Cauchy problem for general dispersive equations

$\displaystyle w_t +iP(D)w=0,\quad w(x,0)=q (x), \quad x\in \mathbb{R}^n, \ t\in \mathbb{R} , $

enjoy the local smoothing property

$\displaystyle q\in H^s (\mathbb{R}^n) \implies w\in L^2 \Big (-T,T; H^{s+\frac {m-1}{2}}_{loc} \left (\mathbb{R}^n\right )\Big ) , $

where $ m$ is the order of the pseudo-differential operator $ P(D)$. This property, now called local Kato-smoothing, was first discovered by Kato for the KdV equation and implicitly shown later by Sjölin and Vega independently for the linear Schrödinger equation. In this paper, we show that the local Kato-smoothing property possessed by solutions of general dispersive equations in the 1D case is sharp, meaning that there exist initial data $ q\in H^s \left (\mathbb{R} \right )$ such that the corresponding solution $ w$ does not belong to the space $ L^2 \Big (-T,T; H^{s+\frac {m-1}{2} +\epsilon }_{loc} \left (\mathbb{R}\right )\Big )$ for any $ \epsilon >0$.

References [Enhancements On Off] (What's this?)

  • [1] Jerry L. Bona, S. M. Sun, and Bing-Yu Zhang, A non-homogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc. 354 (2002), no. 2, 427-490. MR 1862556, https://doi.org/10.1090/S0002-9947-01-02885-9
  • [2] Jerry L. Bona, Shu Ming Sun, and Bing-Yu Zhang, A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain, Comm. Partial Differential Equations 28 (2003), no. 7-8, 1391-1436. MR 1998942, https://doi.org/10.1081/PDE-120024373
  • [3] Jerry L. Bona, S. M. Sun, and Bing-Yu Zhang, Boundary smoothing properties of the Korteweg-de Vries equation in a quarter plane and applications, Dyn. Partial Differ. Equ. 3 (2006), no. 1, 1-69. MR 2221746, https://doi.org/10.4310/DPDE.2006.v3.n1.a1
  • [4] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156. MR 1209299, https://doi.org/10.1007/BF01896020
  • [5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. MR 1215780, https://doi.org/10.1007/BF01895688
  • [6] Eduardo Cerpa, Ivonne Rivas, and Bing-Yu Zhang, Boundary controllability of the Korteweg-de Vries equation on a bounded domain, SIAM J. Control Optim. 51 (2013), no. 4, 2976-3010. MR 3079314, https://doi.org/10.1137/120891721
  • [7] Michael Christ, James Colliander, and Terrence Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235-1293. MR 2018661
  • [8] J. E. Colliander and C. E. Kenig, The generalized Korteweg-de Vries equation on the half line, Comm. Partial Differential Equations 27 (2002), no. 11-12, 2187-2266. MR 1944029, https://doi.org/10.1081/PDE-120016157
  • [9] P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations, J. Amer. Math. Soc. 1 (1988), no. 2, 413-439. MR 928265, https://doi.org/10.2307/1990923
  • [10] Justin Holmer, The initial-boundary value problem for the Korteweg-de Vries equation, Comm. Partial Differential Equations 31 (2006), no. 7-9, 1151-1190. MR 2254610, https://doi.org/10.1080/03605300600718503
  • [11] Justin Holmer, The initial-boundary-value problem for the 1D nonlinear Schrödinger equation on the half-line, Differential Integral Equations 18 (2005), no. 6, 647-668. MR 2136703
  • [12] Chaohua Jia and Bing-Yu Zhang, Boundary stabilization of the Korteweg-de Vries equation and the Korteweg-de Vries-Burgers equation, Acta Appl. Math. 118 (2012), 25-47. MR 2892493, https://doi.org/10.1007/s10440-012-9676-4
  • [13] T. Kato, On the Korteweg-de Vries equation, Manuscripta Mathematica, 28 (1979), 89-99.
  • [14] Tosio Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in applied mathematics, Adv. Math. Suppl. Stud., vol. 8, Academic Press, New York, 1983, pp. 93-128. MR 759907
  • [15] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, On the (generalized) Korteweg-de Vries equation, Duke Math. J. 59 (1989), no. 3, 585-610. MR 1046740, https://doi.org/10.1215/S0012-7094-89-05927-9
  • [16] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), no. 1, 33-69. MR 1101221, https://doi.org/10.1512/iumj.1991.40.40003
  • [17] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), no. 2, 323-347. MR 1086966, https://doi.org/10.2307/2939277
  • [18] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), no. 4, 527-620. MR 1211741, https://doi.org/10.1002/cpa.3160460405
  • [19] Carlos E. Kenig, Gustavo Ponce, and Luis Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603. MR 1329387, https://doi.org/10.1090/S0894-0347-96-00200-7
  • [20] Lionel Rosier and Bing-Yu Zhang, Control and stabilization of the Korteweg-de Vries equation: recent progresses, J. Syst. Sci. Complex. 22 (2009), no. 4, 647-682. MR 2565262, https://doi.org/10.1007/s11424-009-9194-2
  • [21] David L. Russell and Bing Yu Zhang, Smoothing and decay properties of solutions of the Korteweg-de Vries equation on a periodic domain with point dissipation, J. Math. Anal. Appl. 190 (1995), no. 2, 449-488. MR 1318405, https://doi.org/10.1006/jmaa.1995.1087
  • [22] Per Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55 (1987), no. 3, 699-715. MR 904948, https://doi.org/10.1215/S0012-7094-87-05535-9
  • [23] Luis Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), no. 4, 874-878. MR 934859, https://doi.org/10.2307/2047326

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B65, 35Q53, 35Q55

Retrieve articles in all journals with MSC (2010): 35B65, 35Q53, 35Q55


Additional Information

Shu-Ming Sun
Affiliation: Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
Email: sun@math.vt.edu

Emmanuel Trélat
Affiliation: Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, Institut Universitaire de France, 4 place Jussieu, 75005, Paris, France
Email: emmanuel.trelat@upmc.fr

Bing-Yu Zhang
Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221 – and – Yangtze Center of Mathematics, Sichuan University, Chengdu, People’s Republic of China
Email: zhangb@ucmail.uc.edu

Ning Zhong
Affiliation: Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221
Email: zhongn@ucmail.uc.edu

DOI: https://doi.org/10.1090/proc/13286
Keywords: Local Kato smoothing property, dispersive wave equations, the KdV equation, the Schr\"odinger equation
Received by editor(s): March 27, 2016
Received by editor(s) in revised form: March 31, 2016
Published electronically: August 5, 2016
Additional Notes: The first author was partially supported by the National Science Foundation under grant No. DMS-1210979.
The third author was partially supported by a grant from the Simons Foundation (201615), and the NSF of China (11231007, 11571244).
Communicated by: Joachim Krieger
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society