Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The billiard inside an ellipse deformed by the curvature flow

Authors: Josué Damasceno, Mario J. Dias Carneiro and Rafael Ramírez-Ros
Journal: Proc. Amer. Math. Soc. 145 (2017), 705-719
MSC (2010): Primary 37E40, 37J45, 37B40, 53C44
Published electronically: September 29, 2016
MathSciNet review: 3577872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The billiard dynamics inside an ellipse is integrable. It has zero topological entropy, four separatrices in the phase space, and a continuous family of convex caustics: the confocal ellipses. We prove that the curvature flow destroys the integrability, increases the topological entropy, splits the separatrices in a transverse way, and breaks all resonant convex caustics.

References [Enhancements On Off] (What's this?)

  • [1] M. Abramowitz and I. Stegun,
    Handbook of Mathematical Functions,
    Dover, New York, 1972.
  • [2] George D. Birkhoff, Dynamical systems, With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. MR 0209095
  • [3] Keith Burns and Howard Weiss, A geometric criterion for positive topological entropy, Comm. Math. Phys. 172 (1995), no. 1, 95-118. MR 1346373
  • [4] Pablo S. Casas and Rafael Ramírez-Ros, The frequency map for billiards inside ellipsoids, SIAM J. Appl. Dyn. Syst. 10 (2011), no. 1, 278-324. MR 2788926,
  • [5] Shau-Jin Chang and Richard Friedberg, Elliptical billiards and Poncelet's theorem, J. Math. Phys. 29 (1988), no. 7, 1537-1550. MR 946326,
  • [6] Kai-Seng Chou and Xi-Ping Zhu, The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1888641
  • [7] R. Cushman, Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors, Trans. Amer. Math. Soc. 238 (1978), 45-55. MR 0478223
  • [8] Amadeu Delshams and Rafael Ramírez-Ros, Poincaré-Melnikov-Arnold method for analytic planar maps, Nonlinearity 9 (1996), no. 1, 1-26. MR 1373998,
  • [9] Amadeu Delshams and Rafael Ramírez-Ros, Melnikov potential for exact symplectic maps, Comm. Math. Phys. 190 (1997), no. 1, 213-245. MR 1484553,
  • [10] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom. 23 (1986), no. 1, 69-96. MR 840401
  • [11] Matthew A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), no. 2, 285-314. MR 906392
  • [12] John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768
  • [13] Valeriĭ V. Kozlov and Dmitriĭ V. Treshchëv, Billiards, Translations of Mathematical Monographs, vol. 89, American Mathematical Society, Providence, RI, 1991. A genetic introduction to the dynamics of systems with impacts; Translated from the Russian by J. R. Schulenberger. MR 1118378
  • [14] Dan Jane, An example of how the Ricci flow can increase topological entropy, Ergodic Theory Dynam. Systems 27 (2007), no. 6, 1919-1932. MR 2371602,
  • [15] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374
  • [16] V. F. Lazutkin, Existence of caustics for the billiard problem in a convex domain, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973), 186-216 (Russian). MR 0328219
  • [17] Sônia Pinto-de-Carvalho and Rafael Ramírez-Ros, Non-persistence of resonant caustics in perturbed elliptic billiards, Ergodic Theory Dynam. Systems 33 (2013), no. 6, 1876-1890. MR 3122155,
  • [18] Rafael Ramírez-Ros, Break-up of resonant invariant curves in billiards and dual billiards associated to perturbed circular tables, Phys. D 214 (2006), no. 1, 78-87. MR 2200796,
  • [19] Serge Tabachnikov, Billiards, Panor. Synth. 1 (1995), vi+142 (English, with English and French summaries). MR 1328336
  • [20] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37E40, 37J45, 37B40, 53C44

Retrieve articles in all journals with MSC (2010): 37E40, 37J45, 37B40, 53C44

Additional Information

Josué Damasceno
Affiliation: Departamento de Matemática, Universidade Federal de Ouro Preto, 35.400–000, Ouro Preto, Brazil

Mario J. Dias Carneiro
Affiliation: Departamento de Matemática, ICEx, Universidade Federal de Minas Gerais, 30.123–970, Belo Horizonte, Brazil

Rafael Ramírez-Ros
Affiliation: Departament de Matemàtiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

Keywords: Billiard, curvature flow, topological entropy, Melnikov method
Received by editor(s): November 4, 2015
Received by editor(s) in revised form: April 6, 2016
Published electronically: September 29, 2016
Additional Notes: The third author was supported in part by CUR-DIUE Grant 2014SGR504 (Catalonia) and MINECO-FEDER Grant MTM2015-65715-P (Spain).
Communicated by: Yingfei Yi
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society