Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On hereditary properties of quantum group amenability


Author: Jason Crann
Journal: Proc. Amer. Math. Soc. 145 (2017), 627-635
MSC (2010): Primary 46M10, 43A07; Secondary 47L25, 46L89
DOI: https://doi.org/10.1090/proc/13365
Published electronically: October 18, 2016
MathSciNet review: 3577866
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a locally compact quantum group $ \mathbb{G}$ and a closed quantum subgroup $ \mathbb{H}$, we show that $ \mathbb{G}$ is amenable if and only if $ \mathbb{H}$ is amenable and $ \mathbb{G}$ acts amenably on the quantum homogenous space $ \mathbb{G}/\mathbb{H}$. We also study the existence of $ L^1(\widehat {\mathbb{G}})$-module projections from $ L^{\infty }(\widehat {\mathbb{G}})$ onto $ L^{\infty }(\widehat {\mathbb{H}})$.


References [Enhancements On Off] (What's this?)

  • [1] E. Bédos and L. Tuset, Amenability and co-amenability for locally compact quantum groups, Internat. J. Math. 14 (2003), no. 8, 865-884. MR 2013149, https://doi.org/10.1142/S0129167X03002046
  • [2] Man Duen Choi, A Schwarz inequality for positive linear maps on $ C^{\ast } \ $-algebras, Illinois J. Math. 18 (1974), 565-574. MR 0355615
  • [3] J. Crann, Amenability and covariant injectivity of locally compact quantum groups II. Canadian J. Math. to appear. arXiv:1507.03296.
  • [4] Jason Crann and Matthias Neufang, Amenability and covariant injectivity of locally compact quantum groups, Trans. Amer. Math. Soc. 368 (2016), no. 1, 495-513. MR 3413871, https://doi.org/10.1090/tran/6374
  • [5] H. G. Dales and M. E. Polyakov, Homological properties of modules over group algebras, Proc. London Math. Soc. (3) 89 (2004), no. 2, 390-426. MR 2078704, https://doi.org/10.1112/S0024611504014686
  • [6] Matthew Daws, Categorical aspects of quantum groups: multipliers and intrinsic groups, Canad. J. Math. 68 (2016), no. 2, 309-333. MR 3484369, https://doi.org/10.4153/CJM-2015-022-0
  • [7] Matthew Daws, Paweł Kasprzak, Adam Skalski, and Piotr M. Sołtan, Closed quantum subgroups of locally compact quantum groups, Adv. Math. 231 (2012), no. 6, 3473-3501. MR 2980506, https://doi.org/10.1016/j.aim.2012.09.002
  • [8] Jacques Delaporte and Antoine Derighetti, Invariant projections and convolution operators, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1427-1435 (electronic). MR 1814169, https://doi.org/10.1090/S0002-9939-00-05874-3
  • [9] Antoine Derighetti, Conditional expectations on $ CV_p(G)$. Applications, J. Funct. Anal. 247 (2007), no. 1, 231-251. MR 2319760, https://doi.org/10.1016/j.jfa.2007.03.003
  • [10] Pieter Desmedt, Johan Quaegebeur, and Stefaan Vaes, Amenability and the bicrossed product construction, Illinois J. Math. 46 (2002), no. 4, 1259-1277. MR 1988262
  • [11] Edward G. Effros and Akitaka Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), no. 2, 257-276. MR 891774, https://doi.org/10.1512/iumj.1987.36.36015
  • [12] B. Forrest, E. Kaniuth, A. T. Lau, and N. Spronk, Ideals with bounded approximate identities in Fourier algebras, J. Funct. Anal. 203 (2003), no. 1, 286-304. MR 1996874, https://doi.org/10.1016/S0022-1236(02)00121-0
  • [13] Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91-123 (English, with French summary). MR 0355482
  • [14] Mehrdad Kalantar and Matthias Neufang, From quantum groups to groups, Canad. J. Math. 65 (2013), no. 5, 1073-1094. MR 3095007, https://doi.org/10.4153/CJM-2012-047-x
  • [15] Eberhard Kaniuth and Anthony T. Lau, A separation property of positive definite functions on locally compact groups and applications to Fourier algebras, J. Funct. Anal. 175 (2000), no. 1, 89-110. MR 1774852, https://doi.org/10.1006/jfan.2000.3612
  • [16] Paweł Kasprzak and Piotr M. Sołtan, Embeddable quantum homogeneous spaces, J. Math. Anal. Appl. 411 (2014), no. 2, 574-591. MR 3128415, https://doi.org/10.1016/j.jmaa.2013.07.084
  • [17] Johan Kustermans and Stefaan Vaes, Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), no. 1, 68-92. MR 1951446
  • [18] Horst Leptin, Sur l'algèbre de Fourier d'un groupe localement compact, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1180-A1182 (French). MR 0239002
  • [19] S. Vaes, Locally Compact Quantum Groups. Ph.D. thesis, K.U. Leuven, 2000.
  • [20] Stefaan Vaes, A new approach to induction and imprimitivity results, J. Funct. Anal. 229 (2005), no. 2, 317-374. MR 2182592, https://doi.org/10.1016/j.jfa.2004.11.016
  • [21] Alfons Van Daele, Locally compact quantum groups. A von Neumann algebra approach, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 082, 41. MR 3261862, https://doi.org/10.3842/SIGMA.2014.082

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46M10, 43A07, 47L25, 46L89

Retrieve articles in all journals with MSC (2010): 46M10, 43A07, 47L25, 46L89


Additional Information

Jason Crann
Affiliation: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6
Email: jcrann@math.carleton.ca

DOI: https://doi.org/10.1090/proc/13365
Keywords: Locally compact quantum groups, amenability
Received by editor(s): March 11, 2016
Published electronically: October 18, 2016
Communicated by: Adrian Ioana
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society