Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

The congruence $ ax_1x_2\cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k} \equiv c \pmod p$


Authors: Anwar Ayyad and Todd Cochrane
Journal: Proc. Amer. Math. Soc. 145 (2017), 467-477
MSC (2010): Primary 11A07, 11L05, 11L40, 11D79
DOI: https://doi.org/10.1090/proc/13429
Published electronically: October 31, 2016
MathSciNet review: 3577853
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For prime $ p$ and integers $ a,b,c$ with $ p \nmid ab$, we obtain solutions of the congruence

$\displaystyle ax_1x_2 \cdots x_k + bx_{k+1}x_{k+2}\cdots x_{2k}\equiv c \pmod p$    

in a cube $ \mathcal B$ with edge length $ B$. For a cube in general position, we show that if $ p \nmid abc$ and $ k \ge 5$, then the congruence above has a solution in any cube with edge length $ B \gg p^{\frac 14 + \frac 1{2(\sqrt {k} +1.95)}+ \epsilon }.$ Estimates are given for the case $ p\vert c$ as well, and improvements are given for small $ k$. For cubes cornered at the origin, $ 1 \le x_i \le B$ for all $ i$, we obtain a solution provided only that $ B\gg p^{\frac 3{2k} + O\left (\frac k{\log \log p}\right )}.$ Under the assumption of GRH best possible estimates are given. Boxes with unequal edge lengths are also discussed.

References [Enhancements On Off] (What's this?)

  • [1] Anwar Ayyad, The distribution of solutions of the congruence $ x_1x_2x_3\cdots x_n\equiv c\pmod p$, Proc. Amer. Math. Soc. 127 (1999), no. 4, 943-950. MR 1641700, https://doi.org/10.1090/S0002-9939-99-05124-2
  • [2] Anwar Ayyad and Todd Cochrane, Lattices in $ \mathbb{Z}^2$ and the congruence $ xy+uv\equiv c\pmod m$, Acta Arith. 132 (2008), no. 2, 127-133. MR 2395148, https://doi.org/10.4064/aa132-2-2
  • [3] Jean Bourgain, Moubariz Z. Garaev, Sergei V. Konyagin, and Igor E. Shparlinski, On the hidden shifted power problem, SIAM J. Comput. 41 (2012), no. 6, 1524-1557. MR 3023803, https://doi.org/10.1137/110850414
  • [4] Jean Bourgain, Moubariz Z. Garaev, Sergei V. Konyagin, and Igor E. Shparlinski, On congruences with products of variables from short intervals and applications, Tr. Mat. Inst. Steklova 280 (2013), no. Ortogonalnye Ryady, Teoriya Priblizhenii i Smezhnye Voprosy, 67-96; English transl., Proc. Steklov Inst. Math. 280 (2013), no. 1, 61-90. MR 3241837
  • [5] Jean Bourgain, Moubariz Z. Garaev, Sergei V. Konyagin, and Igor E. Shparlinski, Multiplicative congruences with variables from short intervals, J. Anal. Math. 124 (2014), 117-147. MR 3286051, https://doi.org/10.1007/s11854-014-0029-2
  • [6] D. A. Burgess, On character sums and $ L$-series, Proc. London Math. Soc. (3) 12 (1962), 193-206. MR 0132733
  • [7] D. A. Burgess, On character sums and $ L$-series. II, Proc. London Math. Soc. (3) 13 (1963), 524-536. MR 0148626
  • [8] Todd Cochrane and Zhiyong Zheng, High order moments of character sums, Proc. Amer. Math. Soc. 126 (1998), no. 4, 951-956. MR 1473660, https://doi.org/10.1090/S0002-9939-98-04625-5
  • [9] M. Z. Garaev, On multiplicative congruences, Math. Z. 272 (2012), no. 1-2, 473-482. MR 2968237, https://doi.org/10.1007/s00209-011-0944-1
  • [10] M. Z. Garaev and V. C. Garcia, The equation $ x_1x_2=x_3x_4+\lambda $ in fields of prime order and applications, J. Number Theory 128 (2008), no. 9, 2520-2537. MR 2444208, https://doi.org/10.1016/j.jnt.2008.02.017
  • [11] Glyn Harman and Igor E. Shparlinski, Products of Small Integers in Residue Classes and Additive Properties of Fermat Quotients, Int. Math. Res. Not. IMRN 5 (2016), 1424-1446. MR 3509931, https://doi.org/10.1093/imrn/rnv182
  • [12] Derrick Hart and Alex Iosevich, Sums and products in finite fields: an integral geometric viewpoint, Radon transforms, geometry, and wavelets, Contemp. Math., vol. 464, Amer. Math. Soc., Providence, RI, 2008, pp. 129-135. MR 2440133, https://doi.org/10.1090/conm/464/09080
  • [13] J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de $ N$, Canad. Math. Bull. 26 (1983), no. 4, 485-492 (French, with English summary). MR 716590, https://doi.org/10.4153/CMB-1983-078-5
  • [14] Igor E. Shparlinski, Modular hyperbolas, Jpn. J. Math. 7 (2012), no. 2, 235-294. MR 2995230, https://doi.org/10.1007/s11537-012-1140-8

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11A07, 11L05, 11L40, 11D79

Retrieve articles in all journals with MSC (2010): 11A07, 11L05, 11L40, 11D79


Additional Information

Anwar Ayyad
Affiliation: Department of Mathematics, Al Azhar University, P.O. Box 1277, Gaza Strip, Palestine
Email: anwarayyad@yahoo.com

Todd Cochrane
Affiliation: Department of Mathematics, Kansas State University, Manhattan, Kansas 66506
Email: cochrane@math.ksu.edu

DOI: https://doi.org/10.1090/proc/13429
Keywords: Modular hyperbolas, multiplicative congruences, sum-product sets
Received by editor(s): October 31, 2015
Published electronically: October 31, 2016
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society