Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Braided $ \mathbb{Z}_q$-extensions of pointed fusion categories


Author: Jingcheng Dong
Journal: Proc. Amer. Math. Soc. 145 (2017), 995-1001
MSC (2010): Primary 18D10; Secondary 16T05
DOI: https://doi.org/10.1090/proc/13275
Published electronically: September 15, 2016
MathSciNet review: 3589299
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify braided $ \mathbb{Z}_q$-extensions of pointed fusion categories, where $ q$ is a prime number. As an application, we classify modular categories of Frobenius-Perron dimension $ q^3$.


References [Enhancements On Off] (What's this?)

  • [1] V. Drinfeld, S. Gelaki, D. Nikshych, V. Ostrik, Group-theoretical properties of nilpotent modular categories, preprint arXiv:0704.0195.
  • [2] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), no. 1, 1-119. MR 2609644, https://doi.org/10.1007/s00029-010-0017-z
  • [3] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581-642. MR 2183279, https://doi.org/10.4007/annals.2005.162.581
  • [4] Pavel Etingof, Dmitri Nikshych, and Victor Ostrik, Weakly group-theoretical and solvable fusion categories, Adv. Math. 226 (2011), no. 1, 176-205. MR 2735754, https://doi.org/10.1016/j.aim.2010.06.009
  • [5] Shlomo Gelaki and Dmitri Nikshych, Nilpotent fusion categories, Adv. Math. 217 (2008), no. 3, 1053-1071. MR 2383894, https://doi.org/10.1016/j.aim.2007.08.001
  • [6] Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145
  • [7] J. Liptrap, Generalized Tambara-Yamagami categories, preprint arXiv:1002.3166.
  • [8] Michael Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291-308. MR 1990929, https://doi.org/10.1112/S0024611503014187
  • [9] Sonia Natale, Faithful simple objects, orders and gradings of fusion categories, Algebr. Geom. Topol. 13 (2013), no. 3, 1489-1511. MR 3071133, https://doi.org/10.2140/agt.2013.13.1489
  • [10] Daisuke Tambara and Shigeru Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra 209 (1998), no. 2, 692-707. MR 1659954, https://doi.org/10.1006/jabr.1998.7558

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 18D10, 16T05

Retrieve articles in all journals with MSC (2010): 18D10, 16T05


Additional Information

Jingcheng Dong
Affiliation: College of Engineering, Nanjing Agricultural University, Nanjing 210031, People’s Republic of China
Email: dongjc@njau.edu.cn

DOI: https://doi.org/10.1090/proc/13275
Keywords: Extensions of fusion categories, braided fusion categories, modular categories, generalized Tambara-Yamagami fusion categories
Received by editor(s): August 14, 2015
Received by editor(s) in revised form: May 4, 2016
Published electronically: September 15, 2016
Communicated by: Kailash Misra
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society