Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Free ergodic $ \mathbb{Z}^2$-systems and complexity


Authors: Van Cyr and Bryna Kra
Journal: Proc. Amer. Math. Soc. 145 (2017), 1163-1173
MSC (2010): Primary 28D05, 37A25, 37A35
DOI: https://doi.org/10.1090/proc/13279
Published electronically: September 15, 2016
MathSciNet review: 3589316
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using results relating the complexity of a two dimensional subshift to its periodicity, we obtain an application to the well-known conjecture of Furstenberg on a Borel probability measure on $ [0,1)$ which is invariant under both $ x\mapsto px \pmod 1$ and $ x\mapsto qx \pmod 1$, showing that any potential counterexample has a nontrivial lower bound on its complexity.


References [Enhancements On Off] (What's this?)

  • [1] Mike Boyle and Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), no. 1, 55-102. MR 1355295, https://doi.org/10.1090/S0002-9947-97-01634-6
  • [2] J. Cassaigne, A counterexample to a conjecture of Lagarias and Pleasants (2006).
  • [3] Van Cyr and Bryna Kra, Nonexpansive $ \mathbb{Z}^2$-subdynamics and Nivat's conjecture, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6487-6537. MR 3356945, https://doi.org/10.1090/S0002-9947-2015-06391-0
  • [4] V. Cyr and B. Kra, The automorphism group of a minimal shift of stretched exponential growth, arXiv: 1509.08493.
  • [5] Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1-49. MR 0213508
  • [6] Robert I. Jewett, The prevalence of uniquely ergodic systems, J. Math. Mech. 19 (1969/1970), 717-729. MR 0252604
  • [7] Aimee S. A. Johnson, Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers, Israel J. Math. 77 (1992), no. 1-2, 211-240. MR 1194793, https://doi.org/10.1007/BF02808018
  • [8] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, with a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. MR 1326374
  • [9] Wolfgang Krieger, On unique ergodicity, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 327-346. MR 0393402
  • [10] Russell Lyons, On measures simultaneously $ 2$- and $ 3$-invariant, Israel J. Math. 61 (1988), no. 2, 219-224. MR 941238, https://doi.org/10.1007/BF02766212
  • [11] Marston Morse and Gustav A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer. J. Math. 62 (1940), 1-42. MR 0000745
  • [12] M. Nivat, Invited talk at ICALP, Bologna, 1997.
  • [13] Jean-Jacques Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés, Automata, languages and programming (Antwerp, 1984) Lecture Notes in Comput. Sci., vol. 172, Springer, Berlin, 1984, pp. 380-389 (French, with English summary). MR 784265, https://doi.org/10.1007/3-540-13345-3_34
  • [14] Nic Ormes and Ronnie Pavlov, Extender sets and multidimensional subshifts, Ergodic Theory Dynam. Systems 36 (2016), no. 3, 908-923. MR 3480350, https://doi.org/10.1017/etds.2014.71
  • [15] Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286
  • [16] A. Rosenthal, Finite uniform generators for ergodic, finite entropy, free actions of amenable groups, Probab. Theory Related Fields 77 (1988), no. 2, 147-166. MR 927234, https://doi.org/10.1007/BF00334034
  • [17] Daniel J. Rudolph, $ \times 2$ and $ \times 3$ invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395-406. MR 1062766, https://doi.org/10.1017/S0143385700005629
  • [18] Ya. G. Sinaĭ, Topics in ergodic theory, Princeton Mathematical Series, vol. 44, Princeton University Press, Princeton, NJ, 1994. MR 1258087
  • [19] Benjamin Weiss, Strictly ergodic models for dynamical systems, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 143-146. MR 799798, https://doi.org/10.1090/S0273-0979-1985-15399-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 28D05, 37A25, 37A35

Retrieve articles in all journals with MSC (2010): 28D05, 37A25, 37A35


Additional Information

Van Cyr
Affiliation: Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania 17837
Email: van.cyr@bucknell.edu

Bryna Kra
Affiliation: Department of Mathematics, Northwestern University, Evanston, Illinois 60208
Email: kra@math.northwestern.edu

DOI: https://doi.org/10.1090/proc/13279
Received by editor(s): January 25, 2016
Received by editor(s) in revised form: May 5, 2016
Published electronically: September 15, 2016
Additional Notes: The second author was partially supported by NSF grant 1500670.
Communicated by: Nimish Shah
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society