Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convergence rates in periodic homogenization of systems of elasticity


Authors: Zhongwei Shen and Jinping Zhuge
Journal: Proc. Amer. Math. Soc. 145 (2017), 1187-1202
MSC (2010): Primary 35J57
DOI: https://doi.org/10.1090/proc/13289
Published electronically: September 15, 2016
MathSciNet review: 3589318
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with homogenization of systems of linear elasticity with rapidly oscillating periodic coefficients. We establish sharp convergence rates in $ L^2$ for the mixed boundary value problems with bounded measurable coefficients.


References [Enhancements On Off] (What's this?)

  • [1] A. Bensoussan, J.-L. Lions, and G. C. Papanicolaou, Asymptotic Analysis for Periodic Structures, North Holland, 1978.
  • [2] Doina Cioranescu, Alain Damlamian, and Georges Griso, Periodic unfolding and homogenization, C. R. Math. Acad. Sci. Paris 335 (2002), no. 1, 99-104 (English, with English and French summaries). MR 1921004, https://doi.org/10.1016/S1631-073X(02)02429-9
  • [3] D. Cioranescu, A. Damlamian, and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal. 40 (2008), no. 4, 1585-1620. MR 2466168, https://doi.org/10.1137/080713148
  • [4] Georges Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal. 40 (2004), no. 3-4, 269-286. MR 2107633
  • [5] Georges Griso, Interior error estimate for periodic homogenization, Anal. Appl. (Singap.) 4 (2006), no. 1, 61-79. MR 2199793, https://doi.org/10.1142/S021953050600070X
  • [6] Shu Gu, Convergence rates in homogenization of Stokes systems, J. Differential Equations 260 (2016), no. 7, 5796-5815. MR 3456814, https://doi.org/10.1016/j.jde.2015.12.017
  • [7] V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosifyan]. MR 1329546
  • [8] Carlos E. Kenig, Fanghua Lin, and Zhongwei Shen, Convergence rates in $ L^2$ for elliptic homogenization problems, Arch. Ration. Mech. Anal. 203 (2012), no. 3, 1009-1036. MR 2928140, https://doi.org/10.1007/s00205-011-0469-0
  • [9] Carlos E. Kenig, Fanghua Lin, and Zhongwei Shen, Periodic homogenization of Green and Neumann functions, Comm. Pure Appl. Math. 67 (2014), no. 8, 1219-1262. MR 3225629, https://doi.org/10.1002/cpa.21482
  • [10] O. A. Oleĭnik, A. S. Shamaev, and G. A. Yosifian, Mathematical problems in elasticity and homogenization, Studies in Mathematics and its Applications, vol. 26, North-Holland Publishing Co., Amsterdam, 1992. MR 1195131
  • [11] D. Onofrei and B. Vernescu, Error estimates for periodic homogenization with non-smooth coefficients, Asymptot. Anal. 54 (2007), no. 1-2, 103-123. MR 2356467
  • [12] M. A. Pakhnin and T. A. Suslina, Operator error estimates for the homogenization of the elliptic Dirichlet problem in a bounded domain, Algebra i Analiz 24 (2012), no. 6, 139-177 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 24 (2013), no. 6, 949-976. MR 3097556, https://doi.org/10.1090/S1061-0022-2013-01274-X
  • [13] S.E. Pastukhova, Some estimates from homogenized elasticity problems, Dokl. Math. 73 (2006), 102-106.
  • [14] Zhongwei Shen, Convergence rates and Hölder estimates in almost-periodic homogenization of elliptic systems, Anal. PDE 8 (2015), no. 7, 1565-1601. MR 3399132, https://doi.org/10.2140/apde.2015.8.1565
  • [15] T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: $ L_2$-operator error estimates, Mathematika 59 (2013), no. 2, 463-476. MR 3081781
  • [16] Tatiana Suslina, Homogenization of the Neumann problem for elliptic systems with periodic coefficients, SIAM J. Math. Anal. 45 (2013), no. 6, 3453-3493. MR 3131481, https://doi.org/10.1137/120901921
  • [17] V. V. Zhikov and S. E. Pastukhova, On operator estimates for some problems in homogenization theory, Russ. J. Math. Phys. 12 (2005), no. 4, 515-524. MR 2201316

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35J57

Retrieve articles in all journals with MSC (2010): 35J57


Additional Information

Zhongwei Shen
Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

Jinping Zhuge
Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506

DOI: https://doi.org/10.1090/proc/13289
Keywords: Homogenization, convergence rates, systems of elasticity
Received by editor(s): December 2, 2015
Received by editor(s) in revised form: February 10, 2016, and May 11, 2016
Published electronically: September 15, 2016
Communicated by: Svitlana Mayboroda
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society