Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Uniformly continuous orbit equivalence of Markov shifts and gauge actions on Cuntz-Krieger algebras


Author: Kengo Matsumoto
Journal: Proc. Amer. Math. Soc. 145 (2017), 1131-1140
MSC (2010): Primary 37A55, 37B10; Secondary 46L55
DOI: https://doi.org/10.1090/proc/13387
Published electronically: November 29, 2016
MathSciNet review: 3589313
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a notion of uniformly continuous orbit equivalence as a subequivalence relation of continuous orbit equivalence of one-sided topological Markov shifts. It is described in terms of gauge actions on the associated Cuntz-Krieger algebras and continuous full groups of the Markov shifts.


References [Enhancements On Off] (What's this?)

  • [1] Mike Boyle and David Handelman, Orbit equivalence, flow equivalence and ordered cohomology, Israel J. Math. 95 (1996), 169-210. MR 1418293, https://doi.org/10.1007/BF02761039
  • [2] Joachim Cuntz and Wolfgang Krieger, A class of $ C^{\ast } $-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251-268. MR 561974, https://doi.org/10.1007/BF01390048
  • [3] Masatoshi Enomoto, Masatoshi Fujii, and Yasuo Watatani, $ K_{0}$-groups and classifications of Cuntz-Krieger algebras, Math. Japon. 26 (1981), no. 4, 443-460. MR 634920
  • [4] Bruce P. Kitchens, Symbolic dynamics, Universitext, Springer-Verlag, Berlin, 1998. One-sided, two-sided and countable state Markov shifts. MR 1484730
  • [5] Wolfgang Krieger, On dimension functions and topological Markov chains, Invent. Math. 56 (1980), no. 3, 239-250. MR 561973, https://doi.org/10.1007/BF01390047
  • [6] Wolfgang Krieger, On a dimension for a class of homeomorphism groups, Math. Ann. 252 (1979/80), no. 2, 87-95. MR 593623, https://doi.org/10.1007/BF01420115
  • [7] Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092
  • [8] Kengo Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Pacific J. Math. 246 (2010), no. 1, 199-225. MR 2645883, https://doi.org/10.2140/pjm.2010.246.199
  • [9] Kengo Matsumoto, $ K$-groups of the full group actions on one-sided topological Markov shifts, Discrete Contin. Dyn. Syst. 33 (2013), no. 8, 3753-3765. MR 3021379, https://doi.org/10.3934/dcds.2013.33.3753
  • [10] Kengo Matsumoto, Classification of Cuntz-Krieger algebras by orbit equivalence of topological Markov shifts, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2329-2342. MR 3043014, https://doi.org/10.1090/S0002-9939-2013-11519-4
  • [11] Kengo Matsumoto, Full groups of one-sided topological Markov shifts, Israel J. Math. 205 (2015), no. 1, 1-33. MR 3314581, https://doi.org/10.1007/s11856-014-1134-8
  • [12] Kengo Matsumoto, Strongly continuous orbit equivalence of one-sided topological Markov shifts, J. Operator Theory 74 (2015), no. 2, 457-483. MR 3431940
  • [13] K. Matsumoto, Continuous orbit equivalence, flow equivalence of Markov shifts and circle actions on Cuntz-Krieger algebras, preprint, arXiv:1501.06965, to appear in Math. Z. DOI 10.1007/s00209-016-1700-3.
  • [14] Kengo Matsumoto and Hiroki Matui, Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Kyoto J. Math. 54 (2014), no. 4, 863-877. MR 3276420, https://doi.org/10.1215/21562261-2801849
  • [15] Kengo Matsumoto and Hiroki Matui, Continuous orbit equivalence of topological Markov shifts and dynamical zeta functions, Ergodic Theory Dynam. Systems 36 (2016), no. 5, 1557-1581. MR 3519423, https://doi.org/10.1017/etds.2014.128
  • [16] Hiroki Matui, Homology and topological full groups of étale groupoids on totally disconnected spaces, Proc. Lond. Math. Soc. (3) 104 (2012), no. 1, 27-56. MR 2876963, https://doi.org/10.1112/plms/pdr029
  • [17] Hiroki Matui, Topological full groups of one-sided shifts of finite type, J. Reine Angew. Math. 705 (2015), 35-84. MR 3377390, https://doi.org/10.1515/crelle-2013-0041
  • [18] Yiu Tung Poon, A $ K$-theoretic invariant for dynamical systems, Trans. Amer. Math. Soc. 311 (1989), no. 2, 515-533. MR 978367, https://doi.org/10.2307/2001140
  • [19] Şerban Strătilă and Dan Voiculescu, Representations of AF-algebras and of the group $ U(\infty )$, Lecture Notes in Mathematics, Vol. 486, Springer-Verlag, Berlin-New York, 1975. MR 0458188
  • [20] M. Tomforde, The Graph Algebra Problem Page : List of Open Problems, http://www.math.
    uh.edu/tomforde/GraphAlgebraProblems/ListOfProblems.html.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37A55, 37B10, 46L55

Retrieve articles in all journals with MSC (2010): 37A55, 37B10, 46L55


Additional Information

Kengo Matsumoto
Affiliation: Department of Mathematics, Joetsu University of Education, Joetsu, 943-8512, Japan

DOI: https://doi.org/10.1090/proc/13387
Received by editor(s): May 1, 2016
Published electronically: November 29, 2016
Communicated by: Yingfei Yi
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society