Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The locus of plane quartics with a hyperflex

Author: Xuntao Hu
Journal: Proc. Amer. Math. Soc. 145 (2017), 1399-1413
MSC (2010): Primary 11F46, 14H50, 14J15, 14K25, 32G20; Secondary 14H15, 32G15, 14H45, 32G13
Published electronically: September 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the results of a work by Dalla Piazza, Fiorentino and Salvati Manni, we determine an explicit modular form defining the locus of plane quartics with a hyperflex among all plane quartics. As a result, we provide a direct way to compute the divisor class of the locus of plane quartics with a hyperflex within $ \overline {\mathcal {M}_{3}}$, first obtained by Cukierman. Moreover, the knowledge of such an explicit modular form also allows us to describe explicitly the boundary of the hyperflex locus in $ \overline {\mathcal {M}_{3}}$. As an example we show that the locus of banana curves (two irreducible components intersecting at two nodes) is contained in the closure of the hyperflex locus. We also identify an explicit modular form defining the locus of Clebsch quartics and use it to recompute the class of this divisor, first obtained in a work by Ottaviani and Sernesi.

References [Enhancements On Off] (What's this?)

  • [ACG11] E. Arbarello, M. Cornalba, and P. Griffiths,
    Geometry of algebraic curves. Volume II, volume 268 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
    Springer, Heidelberg, 2011,
    With a contribution by Joseph Daniel Harris.
  • [AMRT10] Avner Ash, David Mumford, Michael Rapoport, and Yung-Sheng Tai, Smooth compactifications of locally symmetric varieties, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. With the collaboration of Peter Scholze. MR 2590897
  • [Che15] D. Chen, Degenerations of Abelian Differentials,
    ArXiv e-prints 1504.01983, 2015.
  • [CS12] Claudio Fontanari and Stefano Pascolutti, An affine open covering of $ \mathcal {M}_g$ for $ g\leq 5$, Geom. Dedicata 158 (2012), 61-68. MR 2922703,
  • [Cuk89] Fernando Cukierman, Families of Weierstrass points, Duke Math. J. 58 (1989), no. 2, 317-346. MR 1016424,
  • [DPFSM14] F. Dalla Piazza, A. Fiorentino, and R. Salvati Manni, Plane quartics: the matrix of bitangents,
    ArXiv e-prints 1409.5032, 2014.
  • [Dol12] Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012. A modern view. MR 2964027
  • [Fay73] John D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, Vol. 352, Springer-Verlag, Berlin-New York, 1973. MR 0335789
  • [GH12] Samuel Grushevsky and Klaus Hulek, The class of the locus of intermediate Jacobians of cubic threefolds, Invent. Math. 190 (2012), no. 1, 119-168. MR 2969275,
  • [Gru07] Samuel Grushevsky, Geometry of $ \mathcal {A}_g$ and its compactifications, Algebraic geometry--Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 193-234. MR 2483936,
  • [HS02] Klaus Hulek and G. K. Sankaran, The geometry of Siegel modular varieties, Higher dimensional birational geometry (Kyoto, 1997) Adv. Stud. Pure Math., vol. 35, Math. Soc. Japan, Tokyo, 2002, pp. 89-156. MR 1929793
  • [Igu72] Jun-ichi Igusa, Theta functions, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 194. MR 0325625
  • [Igu81] Jun-ichi Igusa, On the nullwerte of Jacobians of odd theta functions, Symposia Mathematica, Vol. XXIV (Sympos., INDAM, Rome, 1979) Academic Press, London-New York, 1981, pp. 83-95. MR 619242
  • [OS11] Giorgio Ottaviani and Edoardo Sernesi, On singular Lüroth quartics, Sci. China Math. 54 (2011), no. 8, 1757-1766. MR 2824972,
  • [SM83] Riccardo Salvati Manni, On the nonidentically zero Nullwerte of Jacobians of theta functions with odd characteristics, Adv. in Math. 47 (1983), no. 1, 88-104. MR 689766,
  • [SM94] Riccardo Salvati Manni, Modular varieties with level $ 2$ theta structure, Amer. J. Math. 116 (1994), no. 6, 1489-1511. MR 1305875,
  • [Tan89] Masahiko Taniguchi, Pinching deformation of arbitrary Riemann surfaces and variational formulas for abelian differentials, Analytic function theory of one complex variable, Pitman Res. Notes Math. Ser., vol. 212, Longman Sci. Tech., Harlow, 1989, pp. 330-345. MR 1048147
  • [Tan91] Masahiko Taniguchi, On the singularity of the periods of abelian differentials with normal behavior under pinching deformation, J. Math. Kyoto Univ. 31 (1991), no. 4, 1063-1069. MR 1141082
  • [Ver83] Alexius Maria Vermeulen, Weierstrass points of weight two on curves of genus three, Universiteit van Amsterdam, Amsterdam, 1983. Dissertation, University of Amsterdam, Amsterdam, 1983; With a Dutch summary. MR 715084
  • [Yam80] Akira Yamada, Precise variational formulas for abelian differentials, Kodai Math. J. 3 (1980), no. 1, 114-143. MR 569537

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F46, 14H50, 14J15, 14K25, 32G20, 14H15, 32G15, 14H45, 32G13

Retrieve articles in all journals with MSC (2010): 11F46, 14H50, 14J15, 14K25, 32G20, 14H15, 32G15, 14H45, 32G13

Additional Information

Xuntao Hu
Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794

Received by editor(s): January 26, 2016
Received by editor(s) in revised form: May 20, 2016
Published electronically: September 30, 2016
Communicated by: Lev Borisov
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society