Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Independence of volume and genus $ g$ bridge numbers


Authors: Jessica S. Purcell and Alexander Zupan
Journal: Proc. Amer. Math. Soc. 145 (2017), 1805-1818
MSC (2010): Primary 57M25, 57M27, 57M50
DOI: https://doi.org/10.1090/proc/13327
Published electronically: December 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A theorem of Jorgensen and Thurston implies that the volume of a hyperbolic 3-manifold is bounded below by a linear function of its Heegaard genus. Heegaard surfaces and bridge surfaces often exhibit similar topological behavior; thus it is natural to extend this comparison to ask whether a $ (g,b)$-bridge surface for a knot $ K$ in $ S^3$ carries any geometric information related to the knot exterior. In this paper, we show that -- unlike in the case of Heegaard splittings -- hyperbolic volume and genus $ g$-bridge numbers are completely independent. That is, for any $ g$, we construct explicit sequences of knots with bounded volume and unbounded genus $ g$-bridge number, and explicit sequences of knots with bounded genus $ g$-bridge number and unbounded volume.


References [Enhancements On Off] (What's this?)

  • [1] Colin C. Adams, Augmented alternating link complements are hyperbolic, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 115-130. MR 903861
  • [2] Ian Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000), 431-449. MR 1799796, https://doi.org/10.2140/gt.2000.4.431
  • [3] David Bachman and Saul Schleimer, Distance and bridge position, Pacific J. Math. 219 (2005), no. 2, 221-235. MR 2175113, https://doi.org/10.2140/pjm.2005.219.221
  • [4] Kenneth L. Baker, Cameron Gordon, and John Luecke, Bridge number and integral Dehn surgery, Algebr. Geom. Topol. 16 (2016), no. 1, 1-40. MR 3470696, https://doi.org/10.2140/agt.2016.16.1
  • [5] Richard Sean Bowman, Scott Taylor, and Alexander Zupan, Bridge spectra of twisted torus knots, Int. Math. Res. Not. IMRN 16 (2015), 7336-7356. MR 3428964, https://doi.org/10.1093/imrn/rnu162
  • [6] Abhijit Champanerkar, David Futer, Ilya Kofman, Walter Neumann, and Jessica S. Purcell, Volume bounds for generalized twisted torus links, Math. Res. Lett. 18 (2011), no. 6, 1097-1120. MR 2915470, https://doi.org/10.4310/MRL.2011.v18.n6.a5
  • [7] H. Doll, A generalized bridge number for links in $ 3$-manifolds, Math. Ann. 294 (1992), no. 4, 701-717. MR 1190452, https://doi.org/10.1007/BF01934349
  • [8] David Futer, Efstratia Kalfagianni, and Jessica S. Purcell, Dehn filling, volume, and the Jones polynomial, J. Differential Geom. 78 (2008), no. 3, 429-464. MR 2396249
  • [9] David Futer and Jessica S. Purcell, Links with no exceptional surgeries, Comment. Math. Helv. 82 (2007), no. 3, 629-664. MR 2314056, https://doi.org/10.4171/CMH/105
  • [10] John Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001), no. 3, 631-657. MR 1838999, https://doi.org/10.1016/S0040-9383(00)00033-1
  • [11] W. H. Holzmann, An equivariant torus theorem for involutions, Trans. Amer. Math. Soc. 326 (1991), no. 2, 887-906. MR 1034664, https://doi.org/10.2307/2001787
  • [12] J. Johnson and Y. Moriah, Bridge distance and plat presentations, arXiv:1312.7093 [math.GT].
  • [13] Tsuyoshi Kobayashi and Yo'av Rieck, A linear bound on the tetrahedral number of manifolds of bounded volume (after Jørgensen and Thurston), Topology and geometry in dimension three, Contemp. Math., vol. 560, Amer. Math. Soc., Providence, RI, 2011, pp. 27-42. MR 2866921, https://doi.org/10.1090/conm/560/11089
  • [14] Marc Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000), no. 2, 243-282. MR 1756996, https://doi.org/10.1007/s002220000047
  • [15] Kanji Morimoto, Tunnel number, 1-bridge genus and $ h$-genus of knots, Topology Appl. 146/147 (2005), 149-158. MR 2107142, https://doi.org/10.1016/j.topol.2003.02.005
  • [16] Hossein Namazi and Juan Souto, Heegaard splittings and pseudo-Anosov maps, Geom. Funct. Anal. 19 (2009), no. 4, 1195-1228. MR 2570321, https://doi.org/10.1007/s00039-009-0025-3
  • [17] Jessica S. Purcell, Slope lengths and generalized augmented links, Comm. Anal. Geom. 16 (2008), no. 4, 883-905. MR 2471374, https://doi.org/10.4310/CAG.2008.v16.n4.a7
  • [18] Jessica S. Purcell, Hyperbolic geometry of multiply twisted knots, Comm. Anal. Geom. 18 (2010), no. 1, 101-120. MR 2660459, https://doi.org/10.4310/CAG.2010.v18.n1.a4
  • [19] Jessica S. Purcell, On multiply twisted knots that are Seifert fibered or toroidal, Comm. Anal. Geom. 18 (2010), no. 2, 219-256. MR 2672234, https://doi.org/10.4310/CAG.2010.v18.n2.a1
  • [20] Jessica S. Purcell, An introduction to fully augmented links, Interactions between hyperbolic geometry, quantum topology and number theory, Contemp. Math., vol. 541, Amer. Math. Soc., Providence, RI, 2011, pp. 205-220. MR 2796634, https://doi.org/10.1090/conm/541/10685
  • [21] Martin Scharlemann and Maggy Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006), 593-617 (electronic). MR 2224466, https://doi.org/10.2140/gt.2006.10.593
  • [22] William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357-381. MR 648524, https://doi.org/10.1090/S0273-0979-1982-15003-0
  • [23] Maggy Tomova, Multiple bridge surfaces restrict knot distance, Algebr. Geom. Topol. 7 (2007), 957-1006. MR 2336246, https://doi.org/10.2140/agt.2007.7.957
  • [24] Alexander Zupan, Bridge and pants complexities of knots, J. Lond. Math. Soc. (2) 87 (2013), no. 1, 43-68. MR 3022706, https://doi.org/10.1112/jlms/jds030
  • [25] Alexander Zupan, Bridge spectra of iterated torus knots, Comm. Anal. Geom. 22 (2014), no. 5, 931-963. MR 3274955, https://doi.org/10.4310/CAG.2014.v22.n5.a7

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57M25, 57M27, 57M50

Retrieve articles in all journals with MSC (2010): 57M25, 57M27, 57M50


Additional Information

Jessica S. Purcell
Affiliation: School of Mathematical Sciences, 9 Rainforest Walk, Monash University, Victoria 3800, Australia
Email: jessica.purcell@monash.edu

Alexander Zupan
Affiliation: Department of Mathematics, University of Nebraska Lincoln, Lincoln, Nebraska 68588
Email: zupan@unl.edu

DOI: https://doi.org/10.1090/proc/13327
Received by editor(s): March 29, 2016
Published electronically: December 30, 2016
Additional Notes: The first author was partially supported by NSF grants DMS–1252687 and DMS-1128155, and ARC grant DP160103085
The second author was partially supported by NSF grant DMS–1203988
Communicated by: David Futer
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society