Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Arithmetic formulas for the Fourier coefficients of Hauptmoduln of level 2, 3, and 5


Authors: Toshiki Matsusaka and Ryotaro Osanai
Journal: Proc. Amer. Math. Soc. 145 (2017), 1383-1392
MSC (2010): Primary 11F03, 11F30
DOI: https://doi.org/10.1090/proc/13333
Published electronically: December 27, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give arithmetic formulas for the coefficients of Hauptmoduln of higher level as analogues of Kaneko's formula for the $ j$-invariant. We also obtain their asymptotic formulas by employing Murty-Sampath's method.


References [Enhancements On Off] (What's this?)

  • [1] Jan Hendrik Bruinier and Jens Funke, Traces of CM values of modular functions, J. Reine Angew. Math. 594 (2006), 1-33. MR 2248151, https://doi.org/10.1515/CRELLE.2006.034
  • [2] Jan Hendrik Bruinier and Ken Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms, Adv. Math. 246 (2013), 198-219. MR 3091805, https://doi.org/10.1016/j.aim.2013.05.028
  • [3] Dohoon Choi, Daeyeol Jeon, Soon-Yi Kang, and Chang Heon Kim, Exact formulas for traces of singular moduli of higher level modular functions, J. Number Theory 128 (2008), no. 3, 700-707. MR 2389864, https://doi.org/10.1016/j.jnt.2007.04.002
  • [4] Michael Dewar and M. Ram Murty, A derivation of the Hardy-Ramanujan formula from an arithmetic formula, Proc. Amer. Math. Soc. 141 (2013), no. 6, 1903-1911. MR 3034417, https://doi.org/10.1090/S0002-9939-2012-11458-3
  • [5] Michael Dewar and M. Ram Murty, An asymptotic formula for the coefficients of $ j(z)$, Int. J. Number Theory 9 (2013), no. 3, 641-652. MR 3043606, https://doi.org/10.1142/S1793042112501539
  • [6] G. H. Hardy and S. Ramanujan, Asymptotic Formulaae in Combinatory Analysis, Proc. London Math. Soc. S2-17 (1918), no. 1, 75. MR 1575586, https://doi.org/10.1112/plms/s2-17.1.75
  • [7] Masanobu Kaneko, The Fourier coefficients and the singular moduli of the elliptic modular function $ j(\tau )$, Mem. Fac. Engrg. Design Kyoto Inst. Tech. Ser. Sci. Tech. 44 (1995), 1-5. MR 1389469
  • [8] M. R. Murty and K. Sampath, On the asymptotic formula for the Fourier coefficients of $ j$-function, Kyushu J. Math. 70 (2016).
  • [9] Kaori Ohta, Formulas for the Fourier coefficients of some genus zero modular functions, Kyushu J. Math. 63 (2009), no. 1, 1-15. MR 2522920, https://doi.org/10.2206/kyushujm.63.1
  • [10] Hans Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), no. 1, 169-215 (German). MR 1555346, https://doi.org/10.1007/BF02547776
  • [11] Hans Rademacher, The Fourier Coefficients of the Modular Invariant J($ \tau $), Amer. J. Math. 60 (1938), no. 2, 501-512. MR 1507331, https://doi.org/10.2307/2371313
  • [12] Don Zagier, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), Int. Press Lect. Ser., vol. 3, Int. Press, Somerville, MA, 2002, pp. 211-244. MR 1977587

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11F03, 11F30

Retrieve articles in all journals with MSC (2010): 11F03, 11F30


Additional Information

Toshiki Matsusaka
Affiliation: Faculty of Mathematics, Kyushu University, 744 Motooka Nishi - ku, Fukuoka, Japan
Email: toshikimatsusaka@gmail.com

Ryotaro Osanai
Affiliation: Faculty of Mathematics, Kyushu University, 744 Motooka Nishi - ku, Fukuoka, Japan
Email: ryotaroosanai@gmail.com

DOI: https://doi.org/10.1090/proc/13333
Received by editor(s): February 21, 2016
Received by editor(s) in revised form: May 15, 2016
Published electronically: December 27, 2016
Communicated by: Kathrin Bringmann
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society