Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Gap sequences of McMullen sets


Authors: Jun Jie Miao, Li-Feng Xi and Ying Xiong
Journal: Proc. Amer. Math. Soc. 145 (2017), 1629-1637
MSC (2010): Primary 28A80
DOI: https://doi.org/10.1090/proc/13342
Published electronically: November 21, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the gap sequence of totally disconnected McMullen sets. Our result shows that if every horizontal line in the McMullen set is nonempty, then the gap sequence is unrelated to the box dimension. This implies that in such situations, the separation properties of McMullen sets are quite different from that of self-similar sets.


References [Enhancements On Off] (What's this?)

  • [1] Krzysztof Barański, Hausdorff dimension of the limit sets of some planar geometric constructions, Adv. Math. 210 (2007), no. 1, 215-245. MR 2298824, https://doi.org/10.1016/j.aim.2006.06.005
  • [2] T. Bedford,
    Crinkly curves, Markov partitions and box dimensions in self-similar sets,
    PhD thesis, University of Warwick, 1984.
  • [3] A. S. Besicovitch and S. J. Taylor, On the complementary intervals of a linear closed set of zero Lebesgue measure, J. London Math. Soc. 29 (1954), 449-459. MR 0064849
  • [4] Juan Deng, Qin Wang, and Lifeng Xi, Gap sequences of self-conformal sets, Arch. Math. (Basel) 104 (2015), no. 4, 391-400. MR 3325773, https://doi.org/10.1007/s00013-015-0752-7
  • [5] Kenneth Falconer, Techniques in fractal geometry, John Wiley & Sons, Ltd., Chichester, 1997. MR 1449135
  • [6] Kenneth Falconer, Fractal geometry: Mathematical foundations and applications, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. MR 2118797
  • [7] K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 2, 339-350. MR 923687, https://doi.org/10.1017/S0305004100064926
  • [8] K. J. Falconer, The dimension of self-affine fractals. II, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 1, 169-179. MR 1131488, https://doi.org/10.1017/S0305004100075253
  • [9] K. J. Falconer, On the Minkowski measurability of fractals, Proc. Amer. Math. Soc. 123 (1995), no. 4, 1115-1124. MR 1224615, https://doi.org/10.2307/2160708
  • [10] J. M. Fraser and L. Olsen, Multifractal spectra of random self-affine multifractal Sierpinski sponges in $ \mathbb{R}^d$, Indiana Univ. Math. J. 60 (2011), no. 3, 937-983. MR 2985862, https://doi.org/10.1512/iumj.2011.60.4343
  • [11] Ignacio Garcia, Ursula Molter, and Roberto Scotto, Dimension functions of Cantor sets, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3151-3161. MR 2322745, https://doi.org/10.1090/S0002-9939-07-09019-3
  • [12] John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. MR 625600, https://doi.org/10.1512/iumj.1981.30.30055
  • [13] R. Kenyon and Y. Peres, Measures of full dimension on affine-invariant sets, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 307-323. MR 1389626, https://doi.org/10.1017/S0143385700008828
  • [14] James F. King, The singularity spectrum for general Sierpiński carpets, Adv. Math. 116 (1995), no. 1, 1-11. MR 1361476, https://doi.org/10.1006/aima.1995.1061
  • [15] Steven P. Lalley and Dimitrios Gatzouras, Hausdorff and box dimensions of certain self-affine fractals, Indiana Univ. Math. J. 41 (1992), no. 2, 533-568. MR 1183358, https://doi.org/10.1512/iumj.1992.41.41031
  • [16] Michel L. Lapidus and Helmut Maier, The Riemann hypothesis and inverse spectral problems for fractal strings, J. London Math. Soc. (2) 52 (1995), no. 1, 15-34. MR 1345711, https://doi.org/10.1112/jlms/52.1.15
  • [17] Michel L. Lapidus and Carl Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. London Math. Soc. (3) 66 (1993), no. 1, 41-69. MR 1189091, https://doi.org/10.1112/plms/s3-66.1.41
  • [18] Boming Li, Wenxia Li, and Jun Jie Miao, Lipschitz equivalence of McMullen sets, Fractals 21 (2013), no. 3-4, 1350022, 11 pp. MR 3154005
  • [19] Curt McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1-9. MR 771063
  • [20] Lars Olsen, Random self-affine multifractal Sierpinski sponges in $ \mathbb{R}^d$, Monatsh. Math. 162 (2011), no. 1, 89-117. MR 2747346, https://doi.org/10.1007/s00605-009-0160-9
  • [21] Yuval Peres, The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 513-526. MR 1291757, https://doi.org/10.1017/S0305004100072789
  • [22] Yuval Peres and Boris Solomyak, Problems on self-similar sets and self-affine sets: an update, Fractal geometry and stochastics, II (Greifswald/Koserow, 1998) Progr. Probab., vol. 46, Birkhäuser, Basel, 2000, pp. 95-106. MR 1785622
  • [23] Hui Rao, Huo-Jun Ruan, and Ya-Min Yang, Gap sequence, Lipschitz equivalence and box dimension of fractal sets, Nonlinearity 21 (2008), no. 6, 1339-1347. MR 2422383, https://doi.org/10.1088/0951-7715/21/6/011
  • [24] Boris Solomyak, Measure and dimension for some fractal families, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 3, 531-546. MR 1636589, https://doi.org/10.1017/S0305004198002680
  • [25] Li-Feng Xi and Ying Xiong, Ensembles auto-similaires avec motifs initiaux cubiques, C. R. Math. Acad. Sci. Paris 348 (2010), no. 1-2, 15-20 (French, with English and French summaries). MR 2586736, https://doi.org/10.1016/j.crma.2009.12.006
  • [26] Ying Xiong and Min Wu, Category and dimensions for cut-out sets, J. Math. Anal. Appl. 358 (2009), no. 1, 125-135. MR 2527586, https://doi.org/10.1016/j.jmaa.2009.04.057

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 28A80

Retrieve articles in all journals with MSC (2010): 28A80


Additional Information

Jun Jie Miao
Affiliation: Shanghai Key Laboratory of PMMP, Department of Mathematics, East China Normal University, No. 500, Dongchuan Road, Shanghai 200241, People’s Republic of China
Email: jjmiao@math.ecnu.edu.cn

Li-Feng Xi
Affiliation: Department of Mathematics, Ningbo University, Ningbo 315211, People’s Republic of China
Email: xilifengningbo@yahoo.com

Ying Xiong
Affiliation: Department of Mathematics, South China University of Technology, Guangzhou, 510641, People’s Republic of China
Email: xiongyng@gmail.com

DOI: https://doi.org/10.1090/proc/13342
Keywords: McMullen sets, gap sequences
Received by editor(s): June 7, 2015
Received by editor(s) in revised form: June 5, 2016
Published electronically: November 21, 2016
Additional Notes: The authors were supported by National Natural Science Foundation of China (Grants No. 11201152, 11371329, 11471124), NSF of Zhejiang Province (No. LR13A010001), the Fund for the Doctoral Program of Higher Education of China 20120076120001 and Morningside Center of Mathematics.
Communicated by: Kevin Whyte
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society