Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On solvable compact Clifford-Klein forms


Authors: Maciej Bocheński and Aleksy Tralle
Journal: Proc. Amer. Math. Soc. 145 (2017), 1819-1832
MSC (2010): Primary 57S30, 22F30, 22E40, 22E46
DOI: https://doi.org/10.1090/proc/13370
Published electronically: October 26, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove that under certain assumptions, a reductive homogeneous space $ G/H$ does not admit a solvable compact Clifford-Klein form. This generalizes the well known non-existence theorem of Benoist for nilpotent Clifford-Klein forms. This generalization works for a particular class of homogeneous spaces determined by ``very regular'' embeddings of $ H$ into $ G$.


References [Enhancements On Off] (What's this?)

  • [1] Yves Benoist, Actions propres sur les espaces homogènes réductifs, Ann. of Math. (2) 144 (1996), no. 2, 315-347 (French, with English and French summaries). MR 1418901, https://doi.org/10.2307/2118594
  • [2] M. Bocheński, P. Jastrzebski, A. Tralle, Proper $ SL(2,\mathbb{R})$-actions on homogeneous spaces, arXiv: math.GR 1405.4167
  • [3] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
  • [4] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
  • [5] David Fried and William M. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), no. 1, 1-49. MR 689763, https://doi.org/10.1016/0001-8708(83)90053-1
  • [6] Alessandra Iozzi and Dave Witte Morris, Tessellations of homogeneous spaces of classical groups of real rank two, Geom. Dedicata 103 (2004), 115-191. MR 2034956, https://doi.org/10.1023/B:GEOM.0000013840.18788.81
  • [7] Fanny Kassel, Deformation of proper actions on reductive homogeneous spaces, Math. Ann. 353 (2012), no. 2, 599-632. MR 2915550, https://doi.org/10.1007/s00208-011-0672-1
  • [8] Toshiyuki Kobayashi, A necessary condition for the existence of compact Clifford-Klein forms of homogeneous spaces of reductive type, Duke Math. J. 67 (1992), no. 3, 653-664. MR 1181319, https://doi.org/10.1215/S0012-7094-92-06728-7
  • [9] Toshiyuki Kobayashi and Taro Yoshino, Compact Clifford-Klein forms of symmetric spaces--revisited, Pure Appl. Math. Q. 1 (2005), no. 3, 591-663. MR 2201328, https://doi.org/10.4310/PAMQ.2005.v1.n3.a6
  • [10] Toshiyuki Kobayashi, Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory 6 (1996), no. 2, 147-163. MR 1424629
  • [11] Toshiyuki Kobayashi, Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann. 310 (1998), no. 3, 395-409. MR 1612325, https://doi.org/10.1007/s002080050153
  • [12] Toshiyuki Kobayashi, Discontinuous groups acting on homogeneous spaces of reductive type, Representation theory of Lie groups and Lie algebras (Fuji-Kawaguchiko, 1990), World Sci. Publ., River Edge, NJ, 1992, pp. 59-75. MR 1190750
  • [13] Toshiyuki Kobayashi, Discontinuous groups and Clifford-Klein forms of pseudo-Riemannian homogeneous manifolds, Algebraic and analytic methods in representation theory (Sønderborg, 1994), Perspect. Math., vol. 17, Academic Press, San Diego, CA, 1997, pp. 99-165. MR 1415843, https://doi.org/10.1016/B978-012625440-2/50004-5
  • [14] Toshiyuki Kobayashi, On discontinuous groups acting on homogeneous spaces with noncompact isotropy subgroups, J. Geom. Phys. 12 (1993), no. 2, 133-144. MR 1231232, https://doi.org/10.1016/0393-0440(93)90011-3
  • [15] Toshiyuki Kobayashi, Proper action on a homogeneous space of reductive type, Math. Ann. 285 (1989), no. 2, 249-263. MR 1016093, https://doi.org/10.1007/BF01443517
  • [16] Bertram Kostant, On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4) 6 (1973), 413-455 (1974). MR 0364552
  • [17] François Labourie and Robert J. Zimmer, On the non-existence of cocompact lattices for $ {\rm SL}(n)/{\rm SL}(m)$, Math. Res. Lett. 2 (1995), no. 1, 75-77. MR 1312978, https://doi.org/10.4310/MRL.1995.v2.n1.a7
  • [18] F. Labourie, S. Mozes, and R. J. Zimmer, On manifolds locally modelled on non-Riemannian homogeneous spaces, Geom. Funct. Anal. 5 (1995), no. 6, 955-965. MR 1361517, https://doi.org/10.1007/BF01902217
  • [19] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
  • [20] Yehuda Shalom, Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2) 152 (2000), no. 1, 113-182. MR 1792293, https://doi.org/10.2307/2661380
  • [21] Hee Oh and Dave Witte Morris, Cartan-decomposition subgroups of $ {\rm SO}(2,n)$, Trans. Amer. Math. Soc. 356 (2004), no. 1, 1-38 (electronic). MR 2020022, https://doi.org/10.1090/S0002-9947-03-03428-7
  • [22] Hee Oh and Dave Witte, Compact Clifford-Klein forms of homogeneous spaces of $ {\rm SO}(2,n)$, Geom. Dedicata 89 (2002), 25-57. MR 1890952, https://doi.org/10.1023/A:1014227302011
  • [23] A. L. Onishchik and È. B. Vinberg, Lie groups and algebraic groups, Translated from the Russian and with a preface by D. A. Leites, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990. MR 1064110
  • [24] Lie groups and Lie algebras, III, Structure of Lie groups and Lie algebras, a translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst.Nauchn. i Tekhn. Inform., Moscow, 1990 [MR1056485 (91b:22001)]; translation by V. Minachin [V. V. Minakhin]; translation edited by A. L. Onishchik and È. B. Vinberg, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994. MR 1349140
  • [25] A. L. Oniščik, Decompositions of reductive Lie groups, Mat. Sb. (N.S.) 80 (122) (1969), 553-599 (Russian). MR 0277660
  • [26] A. L. Onishchik, On Lie groups acting transitively on compact manifold II, Matem. Sb. 74 (1967), 398-419 (in Russian).
  • [27] A. L. Oniščik, Inclusion relations between transitive compact transformation groups, Trudy Moskov. Mat. Obšč. 11 (1962), 199-242 (Russian). MR 0153779
  • [28] A. L. Onishchik, Compact Transformation Groups, Johannes Ambrosius Barth, Leipzig, 1993
  • [29] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
  • [30] Dave Witte, Superrigid subgroups and syndetic hulls in solvable Lie groups, Rigidity in dynamics and geometry (Cambridge, 2000) Springer, Berlin, 2002, pp. 441-457. MR 1919416
  • [31] Dave Witte Morris, Introduction to arithmetic groups, Deductive Press, Place of publication not identified, 2015. MR 3307755
  • [32] Dave Witte, Superrigidity of lattices in solvable Lie groups, Invent. Math. 122 (1995), no. 1, 147-193. MR 1354957, https://doi.org/10.1007/BF01231442
  • [33] Dave Witte, Tessellations of solvmanifolds, Trans. Amer. Math. Soc. 350 (1998), no. 9, 3767-3796. MR 1432206, https://doi.org/10.1090/S0002-9947-98-01980-1
  • [34] È. B. Vinberg, V. V. Gorbatsevich, and O. V. Shvartsman, Discrete subgroups of Lie groups, Current problems in mathematics. Fundamental directions, Vol.21 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988, pp. 5-120, 215 (Russian). MR 968445
  • [35] Robert J. Zimmer, Discrete groups and non-Riemannian homogeneous spaces, J. Amer. Math. Soc. 7 (1994), no. 1, 159-168. MR 1207014, https://doi.org/10.2307/2152724

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 57S30, 22F30, 22E40, 22E46

Retrieve articles in all journals with MSC (2010): 57S30, 22F30, 22E40, 22E46


Additional Information

Maciej Bocheński
Affiliation: Department of Mathematics and Computer Science, University of Warmia and Mazury, Słoneczna 54, 10-710, Olsztyn, Poland
Email: mabo@matman.uwm.edu.pl

Aleksy Tralle
Affiliation: Department of Mathematics and Computer Science, University of Warmia and Mazury, Słoneczna 54, 10-710, Olsztyn, Poland
Email: tralle@matman.uwm.edu.pl

DOI: https://doi.org/10.1090/proc/13370
Keywords: Proper actions, homogeneous spaces, Lie groups
Received by editor(s): February 8, 2016
Received by editor(s) in revised form: June 22, 2016
Published electronically: October 26, 2016
Communicated by: Michael Wolf
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society