Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Cocycle conjugacy classes of binary shifts


Author: Geoffrey L. Price
Journal: Proc. Amer. Math. Soc. 145 (2017), 2075-2079
MSC (2010): Primary 46L55, 46L10
DOI: https://doi.org/10.1090/proc/13353
Published electronically: November 3, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every binary shift on the hyperfinite $ II_1$ factor $ R$ is cocycle conjugate to at least countably many non-conjugate binary shifts. This holds in particular for binary shifts of infinite commutant index.


References [Enhancements On Off] (What's this?)

  • [1] William Arveson and Geoffrey Price, The structure of spin systems, Internat. J. Math. 14 (2003), no. 2, 119-137. MR 1966768, https://doi.org/10.1142/S0129167X03001673
  • [2] Donald Bures and Hong Sheng Yin, Outer conjugacy of shifts on the hyperfinite $ {\rm II}_1$-factor, Pacific J. Math. 142 (1990), no. 2, 245-257. MR 1042044
  • [3] Kristen W. Culler and Geoffrey L. Price, On the ranks of skew-centrosymmetric matrices over finite fields, Linear Algebra Appl. 248 (1996), 317-325. MR 1416463, https://doi.org/10.1016/0024-3795(95)00249-9
  • [4] V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), no. 1, 1-25. MR 696688, https://doi.org/10.1007/BF01389127
  • [5] Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR 859186
  • [6] Robert T. Powers, An index theory for semigroups of $ ^*$-endomorphisms of $ {\mathcal {B}}({\mathcal {H}})$ and type $ {\rm II}_1$ factors, Canad. J. Math. 40 (1988), no. 1, 86-114. MR 928215, https://doi.org/10.4153/CJM-1988-004-3
  • [7] Robert T. Powers and Geoffrey L. Price, Cocycle conjugacy classes of shifts on the hyperfinite $ {\rm II}_1$ factor, J. Funct. Anal. 121 (1994), no. 2, 275-295. MR 1272129, https://doi.org/10.1006/jfan.1994.1050
  • [8] Geoffrey L. Price, Shifts on type $ {\rm II}_1$ factors, Canad. J. Math. 39 (1987), no. 2, 492-511. MR 899846, https://doi.org/10.4153/CJM-1987-021-2
  • [9] Geoffrey L. Price, Cocycle conjugacy classes of shifts on the hyperfinite $ {\rm II}_1$ factor. II, J. Operator Theory 39 (1998), no. 1, 177-195. MR 1610322
  • [10] Geoffrey L. Price, Shifts on the hyperfinite $ \rm II_1$ factor, J. Funct. Anal. 156 (1998), no. 1, 121-169. MR 1632956, https://doi.org/10.1006/jfan.1997.3225

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46L55, 46L10

Retrieve articles in all journals with MSC (2010): 46L55, 46L10


Additional Information

Geoffrey L. Price
Affiliation: Department of Mathematics, United States Naval Academy, Annapolis, Maryland 21402
Email: glp@usna.edu

DOI: https://doi.org/10.1090/proc/13353
Keywords: Binary shift, cocycle conjugate, commutant index, CAR algebra
Received by editor(s): April 4, 2016
Received by editor(s) in revised form: June 28, 2016
Published electronically: November 3, 2016
Dedicated: In memory of William B. Arveson
Communicated by: Adrian Ioana
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society