Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On complete metrizability of the Hausdorff metric topology


Author: László Zsilinszky
Journal: Proc. Amer. Math. Soc. 145 (2017), 2281-2289
MSC (2010): Primary 54B20; Secondary 54E50, 54E52, 91A44
DOI: https://doi.org/10.1090/proc/13366
Published electronically: November 18, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that there exists a nonseparable completely metrizable bounded metric space $ (X,d)$ such that the hyperspace $ CL(X)$ of the nonempty closed subsets of $ X$ endowed with the Hausdorff metric $ H_d$ is not completely metrizable.


References [Enhancements On Off] (What's this?)

  • [1] Jean-Pierre Aubin, Applied abstract analysis, Exercises by Bernard Cornet and Hervé Moulin, translated from the French by Carole Labrousse, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR 470034
  • [2] C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310
  • [3] T. Banakh and R. Voytsitskyy, Characterizing metric spaces whose hyperspaces are homeomorphic to $ l_2$, Colloq. Math. 113 (2008), no. 2, 223-229. MR 2425083, https://doi.org/10.4064/cm113-2-4
  • [4] Gerald Beer, Topologies on closed and closed convex sets, Mathematics and its Applications, vol. 268, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1269778
  • [5] Gerald Beer, A Polish topology for the closed subsets of a Polish space, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1123-1133. MR 1065940, https://doi.org/10.2307/2048792
  • [6] Gerald Beer and Giuseppe Di Maio, Confinal completeness of the Hausdorff metric topology, Fund. Math. 208 (2010), no. 1, 75-85. MR 2609221, https://doi.org/10.4064/fm208-1-5
  • [7] H. R. Bennett, D. J. Lutzer, and G. M. Reed, Domain representability and the Choquet game in Moore and BCO-spaces, Topology Appl. 155 (2008), no. 5, 445-458. MR 2380929, https://doi.org/10.1016/j.topol.2007.10.005
  • [8] J. Chaber and R. Pol, Note on the Wijsman hyperspaces of completely metrizable spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), no. 3, 827-832 (English, with English and Italian summaries). MR 1934383
  • [9] Gustave Choquet, Lectures on analysis. Vol. I: Integration and topological vector spaces, Edited by J. Marsden, T. Lance and S. Gelbart, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0250011
  • [10] C. Costantini, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2569-2574. MR 1273484, https://doi.org/10.2307/2161290
  • [11] Camillo Costantini, On the hyperspace of a non-separable metric space, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3393-3396. MR 1618729, https://doi.org/10.1090/S0002-9939-98-04956-9
  • [12] Camillo Costantini, Sandro Levi, and Jan Pelant, Compactness and local compactness in hyperspaces, Topology Appl. 123 (2002), no. 3, 573-608. MR 1924053, https://doi.org/10.1016/S0166-8641(01)00222-X
  • [13] Jiling Cao and A. H. Tomita, The Wijsman hyperspace of a metric hereditarily Baire space is Baire, Topology Appl. 157 (2010), no. 1, 145-151. MR 2556089, https://doi.org/10.1016/j.topol.2009.04.039
  • [14] G. Debs, Espaces héréditairement de Baire, Fund. Math. 129 (1988), no. 3, 199-206 (French, with English summary). MR 962541
  • [15] François G. Dorais and Carl Mummert, Stationary and convergent strategies in Choquet games, Fund. Math. 209 (2010), no. 1, 59-79. MR 2652592, https://doi.org/10.4064/fm209-1-5
  • [16] Edward G. Effros, Convergence of closed subsets in a topological space, Proc. Amer. Math. Soc. 16 (1965), 929-931. MR 0181983
  • [17] Ryszard Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin, 1989. Translated from the Polish by the author. MR 1039321
  • [18] R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math. (Rozprawy Mat.) 141 (1977), 73 pp.. MR 0431104
  • [19] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597
  • [20] Erwin Klein and Anthony C. Thompson, Theory of correspondences, Including applications to mathematical economics, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. MR 752692
  • [21] K. Kuratowski, Topology. Vol. I, New edition, revised and augmented. Translated from the French by J. Jaworowski, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. MR 0217751
  • [22] Keye Martin, Topological games in domain theory, Topology Appl. 129 (2003), no. 2, 177-186. MR 1961398, https://doi.org/10.1016/S0166-8641(02)00147-5
  • [23] John C. Oxtoby, The Banach-Mazur game and Banach category theorem, Contributions to the theory of games, vol. 3, Annals of Mathematics Studies, no. 39, Princeton University Press, Princeton, N. J., 1957, pp. 159-163. MR 0093741
  • [24] E. Porada, Jeu de Choquet, Colloq. Math. 42 (1979), 345-353 (French). MR 567573
  • [25] Rastislav Telgársky, Remarks on a game of Choquet, Colloq. Math. 51 (1987), 365-372. MR 891306
  • [26] H. E. White Jr., Topological spaces that are $ \alpha $-favorable for a player with perfect information, Proc. Amer. Math. Soc. 50 (1975), 477-482. MR 0367941
  • [27] László Zsilinszky, Polishness of the Wijsman topology revisited, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3763-3765. MR 1458275, https://doi.org/10.1090/S0002-9939-98-04526-2
  • [28] László Zsilinszky, On $ \beta $-favorability of the strong Choquet game, Colloq. Math. 125 (2011), no. 2, 233-243. MR 2871316, https://doi.org/10.4064/cm125-2-8

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 54B20, 54E50, 54E52, 91A44

Retrieve articles in all journals with MSC (2010): 54B20, 54E50, 54E52, 91A44


Additional Information

László Zsilinszky
Affiliation: Department of Mathematics and Computer Science, The University of North Carolina at Pembroke, Pembroke, North Carolina 28372
Email: laszlo@uncp.edu

DOI: https://doi.org/10.1090/proc/13366
Keywords: Hausdorff distance, hyperspace, complete metrizability, strong Choquet game, Banach-Mazur game
Received by editor(s): March 4, 2014
Received by editor(s) in revised form: July 11, 2016
Published electronically: November 18, 2016
Communicated by: Ken Ono
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society