Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Log canonical threshold and diagonal ideals


Author: Carles Bivià-Ausina
Journal: Proc. Amer. Math. Soc. 145 (2017), 1905-1916
MSC (2010): Primary 13H15; Secondary 32S05, 14B05
DOI: https://doi.org/10.1090/proc/13382
Published electronically: October 31, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize the ideals $ I$ of $ \mathcal {O}_n$ of finite colength whose integral closure is equal to the integral closure of an ideal generated by pure monomials. This characterization, which is motivated by an inequality proven by Demailly and Pham (2014), is given in terms of the log canonical threshold of $ I$ and the sequence of mixed multiplicities of $ I$.


References [Enhancements On Off] (What's this?)

  • [1] Paolo Aluffi, Log canonical threshold and Segre classes of monomial schemes, Manuscripta Math. 146 (2015), no. 1-2, 1-6. MR 3294415, https://doi.org/10.1007/s00229-014-0686-6
  • [2] Carles Bivià-Ausina, Joint reductions of monomial ideals and multiplicity of complex analytic maps, Math. Res. Lett. 15 (2008), no. 2, 389-407. MR 2385649, https://doi.org/10.4310/MRL.2008.v15.n2.a15
  • [3] David A. Cox, John Little, and Donal O'Shea, Using algebraic geometry, 2nd ed., Graduate Texts in Mathematics, vol. 185, Springer, New York, 2005. MR 2122859
  • [4] Steven Dale Cutkosky, A general volume = multiplicity formula, Acta Math. Vietnam. 40 (2015), no. 1, 139-147. MR 3331938, https://doi.org/10.1007/s40306-014-0093-9
  • [5] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, SINGULAR 3-1-3 -- A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2011).
  • [6] Jean-Pierre Demailly, Estimates on Monge-Ampère operators derived from a local algebra inequality, Complex analysis and digital geometry, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., vol. 86, Uppsala Universitet, Uppsala, 2009, pp. 131-143 (English, with English and French summaries). MR 2742678
  • [7] Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525-556 (English, with English and French summaries). MR 1852009, https://doi.org/10.1016/S0012-9593(01)01069-2
  • [8] Jean-Pierre Demailly and Hoàng Hiệp Phạm, A sharp lower bound for the log canonical threshold, Acta Math. 212 (2014), no. 1, 1-9. MR 3179606, https://doi.org/10.1007/s11511-014-0107-4
  • [9] Tommaso de Fernex, Lawrence Ein, and Mircea Mustaţă, Multiplicities and log canonical threshold, J. Algebraic Geom. 13 (2004), no. 3, 603-615. MR 2047683, https://doi.org/10.1090/S1056-3911-04-00346-7
  • [10] Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286
  • [11] Terence Gaffney and Steven L. Kleiman, Specialization of integral dependence for modules, Invent. Math. 137 (1999), no. 3, 541-574. MR 1709870, https://doi.org/10.1007/s002220050335
  • [12] G.-M. Greuel, C. Lossen, and E. Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, Berlin, 2007. MR 2290112
  • [13] Gert-Martin Greuel and Gerhard Pfister, A Singular introduction to commutative algebra, Second, extended edition. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann, with 1 CD-ROM (Windows, Macintosh and UNIX), Springer, Berlin, 2008. MR 2363237
  • [14] M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and blowing up: An algebraic study, with an appendix by B. Moonen, Springer-Verlag, Berlin, 1988. MR 954831
  • [15] J. A. Howald, Multiplier ideals of monomial ideals, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2665-2671 (electronic). MR 1828466, https://doi.org/10.1090/S0002-9947-01-02720-9
  • [16] Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
  • [17] Robert Lazarsfeld, Positivity in algebraic geometry. II: Positivity for vector bundles, and multiplier ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472
  • [18] Joseph Lipman, Equimultiplicity, reduction, and blowing up, Commutative algebra (Fairfax, Va., 1979) Lecture Notes in Pure and Appl. Math., vol. 68, Dekker, New York, 1982, pp. 111-147. MR 655801
  • [19] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
  • [20] Jeffery D. McNeal and Yunus E. Zeytuncu, Multiplier ideals and integral closure of monomial ideals: an analytic approach, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1483-1493. MR 2869133, https://doi.org/10.1090/S0002-9939-2011-11187-0
  • [21] Mircea Mustaţă, IMPANGA lecture notes on log canonical thresholds, Notes by Tomasz Szemberg, Contributions to algebraic geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 407-442. MR 2976952, https://doi.org/10.4171/114-1/16
  • [22] Mircea Mustaţa, On multiplicities of graded sequences of ideals, J. Algebra 256 (2002), no. 1, 229-249. MR 1936888, https://doi.org/10.1016/S0021-8693(02)00112-6
  • [23] Alexander Rashkovskii, Extremal cases for the log canonical threshold, C. R. Math. Acad. Sci. Paris 353 (2015), no. 1, 21-24 (English, with English and French summaries). MR 3285141, https://doi.org/10.1016/j.crma.2014.11.002
  • [24] Alexander Rashkovskii, Multi-circled singularities, Lelong numbers, and integrability index, J. Geom. Anal. 23 (2013), no. 4, 1976-1992. MR 3107686, https://doi.org/10.1007/s12220-012-9314-4
  • [25] D. Rees, Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984), no. 3, 397-414. MR 754926, https://doi.org/10.1112/jlms/s2-29.3.397
  • [26] D. Rees and R. Y. Sharp, On a theorem of B. Teissier on multiplicities of ideals in local rings, J. London Math. Soc. (2) 18 (1978), no. 3, 449-463. MR 518229, https://doi.org/10.1112/jlms/s2-18.3.449
  • [27] Bernard Teissier, Monomial ideals, binomial ideals, polynomial ideals, Trends in commutative algebra, Math. Sci. Res. Inst. Publ., vol. 51, Cambridge Univ. Press, Cambridge, 2004, pp. 211-246. MR 2132653, https://doi.org/10.1017/CBO9780511756382.008
  • [28] B. Teissier,
    Sur une inégalité à la Minkowski pour les multiplicités,
    (appendix to a paper by D. Eisenbud and H. I. Levine), Ann. of Math. (2) 106 (1977), No. 1, 38-44. MR 0467800
  • [29] Bernard Teissier, Cycles évanescents, sections planes et conditions de Whitney, Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972) Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973, pp. 285-362 (French). MR 0374482
  • [30] Burt Totaro, The ACC conjecture for log canonical thresholds (after de Fernex, Ein, Mustaţă, Kollár), Séminaire Bourbaki. Vol. 2009/2010. Exposés 1012-1026, Astérisque 339 (2011), Exp. No. 1025, ix, 371-385. MR 2906361
  • [31] Irena Swanson, Multigraded Hilbert functions and mixed multiplicities, Syzygies and Hilbert functions, Lect. Notes Pure Appl. Math., vol. 254, Chapman & Hall/CRC, Boca Raton, FL, 2007, pp. 267-280. MR 2309934, https://doi.org/10.1201/9781420050912.ch10

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 13H15, 32S05, 14B05

Retrieve articles in all journals with MSC (2010): 13H15, 32S05, 14B05


Additional Information

Carles Bivià-Ausina
Affiliation: Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
Email: carbivia@mat.upv.es

DOI: https://doi.org/10.1090/proc/13382
Received by editor(s): January 18, 2016
Received by editor(s) in revised form: June 29, 2016, and June 30, 2016
Published electronically: October 31, 2016
Communicated by: Lev Borisov
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society