Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Derivatives of inner functions in weighted Bergman spaces and the Schwarz-Pick lemma


Authors: Fernando Pérez-González and Jouni Rättyä
Journal: Proc. Amer. Math. Soc. 145 (2017), 2155-2166
MSC (2010): Primary 30H20, 30J05
DOI: https://doi.org/10.1090/proc/13384
Published electronically: November 21, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize those radial doubling weights $ \omega $ for which the Schwarz-Pick lemma applied to the derivative of any inner function in the norm of the Bergman space  $ A^p_\omega $ does not cause any essential loss of information. The approach we employ is based on operator theory and leads to a characterization of when the linear average operator

$\displaystyle T(f)(z)=\frac {\int _{\vert z\vert}^1f\left (s\frac {z}{\vert z\vert}\right )\,ds}{1-\vert z\vert} $

is bounded from $ A^p_\omega $ to $ L^p_\omega $. The characterizing integral condition is self-improving and therefore $ T:A^p_\omega \to L^p_\omega $ is bounded if and only if $ T:A^{p-\varepsilon }_\omega \to L^{p-\varepsilon }_\omega $ is bounded for all sufficiently small $ \varepsilon >0$. This study also reveals the fact that, under appropriate hypothesis on $ \omega $, the average operator $ T:A^p_\omega \to L^p_\omega $ is bounded if and only if the Bergman projection $ P:L^p_\omega \to L^p_\omega $ is bounded if and only if the classical Hilbert operator $ \mathcal {H}:L^{p+1}_{\widehat {\omega }}([0,1))\to A^{p+1}_\omega $ is bounded, where $ \widehat {\omega }(r)=\int _r^1\omega (s)\,ds$.

References [Enhancements On Off] (What's this?)

  • [1] Patrick Ahern, The mean modulus and the derivative of an inner function, Indiana Univ. Math. J. 28 (1979), no. 2, 311-347. MR 523107, https://doi.org/10.1512/iumj.1979.28.28022
  • [2] Patrick Ahern, The Poisson integral of a singular measure, Canad. J. Math. 35 (1983), no. 4, 735-749. MR 723040, https://doi.org/10.4153/CJM-1983-042-0
  • [3] Patrick Ahern and Douglas N. Clark, On inner functions with $ H^{p}$-derivative, Michigan Math. J. 21 (1974), 115-127. MR 0344479
  • [4] Patrick Ahern and Douglas N. Clark, On inner functions with $ B^{p}$ derivative, Michigan Math. J. 23 (1976), no. 2, 107-118. MR 0414884
  • [5] Alexandru Aleman and Dragan Vukotić, On Blaschke products with derivatives in Bergman spaces with normal weights, J. Math. Anal. Appl. 361 (2010), no. 2, 492-505. MR 2568713, https://doi.org/10.1016/j.jmaa.2009.07.030
  • [6] Anton Baranov and Rachid Zaraouf, Boundedness of the differentiation operator in the model spaces and application to Peller type inequalities, https:// arxiv.org/abs/1407.6347.
  • [7] David Bekollé and Aline Bonami, Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 18, A775-A778 (French, with English summary). MR 497663
  • [8] Joseph A. Cima and Artur Nicolau, Inner functions with derivatives in the weak Hardy space, Proc. Amer. Math. Soc. 143 (2015), no. 2, 581-594. MR 3283646, https://doi.org/10.1090/S0002-9939-2014-12305-7
  • [9] William S. Cohn, On the $ H^{p}$ classes of derivatives of functions orthogonal to invariant subspaces, Michigan Math. J. 30 (1983), no. 2, 221-229. MR 718268
  • [10] Peter Colwell, Blaschke products, University of Michigan Press, Ann Arbor, MI, 1985. Bounded analytic functions. MR 779463
  • [11] Peter L. Duren, Theory of $ H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • [12] Konstantin M. Dyakonov, A reverse Schwarz-Pick inequality, Comput. Methods Funct. Theory 13 (2013), no. 3, 449-457. MR 3102647, https://doi.org/10.1007/s40315-013-0029-8
  • [13] Emmanuel Fricain and Javad Mashreghi, Integral means of the derivatives of Blaschke products, Glasg. Math. J. 50 (2008), no. 2, 233-249. MR 2417618, https://doi.org/10.1017/S0017089508004175
  • [14] John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • [15] Daniel Girela, Cristóbal González, and Miroljub Jevtić, Inner functions in Lipschitz, Besov, and Sobolev spaces, Abstr. Appl. Anal. , posted on (2011), Art. ID 626254, 26. MR 2802834, https://doi.org/10.1155/2011/626254
  • [16] Daniel Girela and José Ángel Peláez, On the derivative of infinite Blaschke products, Illinois J. Math. 48 (2004), no. 1, 121-130. MR 2048218
  • [17] Daniel Girela and José Ángel Peláez, On the membership in Bergman spaces of the derivative of a Blaschke product with zeros in a Stolz domain, Canad. Math. Bull. 49 (2006), no. 3, 381-388. MR 2252260, https://doi.org/10.4153/CMB-2006-038-x
  • [18] Daniel Girela, José Ángel Peláez, and Dragan Vukotić, Integrability of the derivative of a Blaschke product, Proc. Edinb. Math. Soc. (2) 50 (2007), no. 3, 673-687. MR 2360523, https://doi.org/10.1017/S0013091504001014
  • [19] Alan Gluchoff, The mean modulus of a Blaschke product with zeroes in a nontangential region, Complex Variables Theory Appl. 1 (1983), no. 4, 311-326. MR 706988
  • [20] Alan Gluchoff, On inner functions with derivative in Bergman spaces, Illinois J. Math. 31 (1987), no. 3, 518-528. MR 892184
  • [21] Yasuhiro Gotoh, On integral means of the derivatives of Blaschke products, Kodai Math. J. 30 (2007), no. 1, 147-155. MR 2319084, https://doi.org/10.2996/kmj/1175287629
  • [22] Janne Gröhn and Artur Nicolau, Inner functions in weak Besov spaces, J. Funct. Anal. 266 (2014), no. 6, 3685-3700. MR 3165238, https://doi.org/10.1016/j.jfa.2013.11.006
  • [23] Hong Oh Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), no. 1, 175-190. MR 755488
  • [24] Mirwan Amin Kutbi, Integral means for the first derivative of Blaschke products, Kodai Math. J. 24 (2001), no. 1, 86-97. MR 1813721, https://doi.org/10.2996/kmj/1106157298
  • [25] Javad Mashreghi, Derivatives of inner functions, Fields Institute Monographs, vol. 31, Springer, New York; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2013. MR 2986324
  • [26] Miodrag Mateljević and Miroslav Pavlović, On the integral means of derivatives of the atomic function, Proc. Amer. Math. Soc. 86 (1982), no. 3, 455-458. MR 671214, https://doi.org/10.2307/2044447
  • [27] Benjamin Muckenhoupt, Hardy's inequality with weights, Studia Math. 44 (1972), 31-38. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. MR 0311856
  • [28] José Ángel Peláez, Sharp results on the integrability of the derivative of an interpolating Blaschke product, Forum Math. 20 (2008), no. 6, 1039-1054. MR 2479288, https://doi.org/10.1515/FORUM.2008.046
  • [29] José Ángel Peláez and Jouni Rättyä, Generalized Hilbert operators on weighted Bergman spaces, Adv. Math. 240 (2013), 227-267. MR 3046308, https://doi.org/10.1016/j.aim.2013.03.006
  • [30] José Ángel Peláez and Jouni Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, Mem. Amer. Math. Soc. 227 (2014), no. 1066, vi+124. MR 3155774
  • [31] José Ángel Peláez and Jouni Rättyä, Two weight inequality for Bergman projection, J. Math. Pures Appl. (9) 105 (2016), no. 1, 102-130 (English, with English and French summaries). MR 3427941, https://doi.org/10.1016/j.matpur.2015.10.001
  • [32] José Ángel Peláez and Jouni Rättyä, Embedding theorems for Bergman spaces via harmonic analysis, Math. Ann. 362 (2015), no. 1-2, 205-239. MR 3343875, https://doi.org/10.1007/s00208-014-1108-5
  • [33] José Ángel Peláez, Jouni Rättyä, and Kian Sierra, Embedding Bergman spaces into tent spaces, Math. Z. 281 (2015), no. 3-4, 1215-1237. MR 3421661, https://doi.org/10.1007/s00209-015-1528-2
  • [34] David Protas, Blaschke products with derivative in $ H^{p}$ and $ B^{p}$, Michigan Math. J. 20 (1973), 393-396. MR 0344478
  • [35] David Protas, Blaschke products with derivative in function spaces, Kodai Math. J. 34 (2011), no. 1, 124-131. MR 2786785, https://doi.org/10.2996/kmj/1301576766
  • [36] A. L. Shields and D. L. Williams, Bonded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302. MR 0283559

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30H20, 30J05

Retrieve articles in all journals with MSC (2010): 30H20, 30J05


Additional Information

Fernando Pérez-González
Affiliation: Departamento de Análisis Matemático, Universidad de La Laguna, 38200 La Laguna, Tenerife, Spain
Email: fernando.perez.gonzalez@ull.es

Jouni Rättyä
Affiliation: Department of Mathematics, University of Eastern Finland, P.O.Box 111, 80101 Joensuu, Finland
Email: jouni.rattya@uef.fi

DOI: https://doi.org/10.1090/proc/13384
Keywords: Inner function, Bergman space, Hardy space, Schwarz-Pick lemma, doubling weight, Muckenhoupt weight, maximal function, Carleson measure
Received by editor(s): June 8, 2016
Received by editor(s) in revised form: July 15, 2016
Published electronically: November 21, 2016
Additional Notes: This research was supported in part by Ministerio de Economia y Competitividad, Spain, projects MTM2011-26538 and MTM2014-52685-P and Academy of Finland project no. 268009, and the Faculty of Science and Forestry of University of Eastern Finland project no. 930349
Communicated by: Stephan Ramon Garcia
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society