Trajectories escaping to infinity in finite time
Author:
J. K. Langley
Journal:
Proc. Amer. Math. Soc. 145 (2017), 2107-2117
MSC (2010):
Primary 30D30
DOI:
https://doi.org/10.1090/proc/13377
Published electronically:
January 11, 2017
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: If the function is transcendental and meromorphic in the plane, and either
has finitely many poles or its inverse function has a logarithmic singularity over
, then the equation
has infinitely many trajectories tending to infinity in finite increasing time.
- [1] Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373. MR 1344897, https://doi.org/10.4171/RMI/176
- [2] Walter Bergweiler, Philip J. Rippon, and Gwyneth M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 368-400. MR 2439666, https://doi.org/10.1112/plms/pdn007
- [3] Louis Brickman and E. S. Thomas, Conformal equivalence of analytic flows, J. Differential Equations 25 (1977), no. 3, 310-324. MR 0447674
- [4] Kevin A. Broughan, The structure of sectors of zeros of entire flows, Proceedings of the 17th Summer Conference on Topology and its Applications, 2003, pp. 379-394. MR 2077797
- [5]
Antonio Garijo, Armengol Gasull, and Xavier Jarque, Local and global phase portrait of equation
, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 309-329. MR 2257435
- [6] Gary G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88-104. MR 921748, https://doi.org/10.1112/jlms/s2-37.121.88
- [7] Otomar Hájek, Notes on meromorphic dynamical systems. I, Czechoslovak Math. J. 16 (91) (1966), 14-27 (English, with Russian summary). MR 0194661
- [8] Otomar Hájek, Notes on meromorphic dynamical systems. II, Czechoslovak Math. J. 16 (91) (1966), 28-35 (English, with Russian summary). MR 0194662
- [9] Otomar Hájek, Notes on meromorphic dynamical systems. III, Czechoslovak Math. J. 16 (91) (1966), 36-40 (English, with Russian summary). MR 0194663
- [10] W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), no. 3, 317-358. MR 0385095
- [11] W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
- [12] D. J. Needham and A. C. King, On meromorphic complex differential equations, Dynam. Stability Systems 9 (1994), no. 2, 99-122. MR 1287510, https://doi.org/10.1080/02681119408806171
- [13] Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30D30
Retrieve articles in all journals with MSC (2010): 30D30
Additional Information
J. K. Langley
Affiliation:
School of Mathematical Sciences, University of Nottingham, NG7 2RD, United Kingdom
Email:
james.langley@nottingham.ac.uk
DOI:
https://doi.org/10.1090/proc/13377
Received by editor(s):
May 11, 2016
Received by editor(s) in revised form:
July 4, 2016
Published electronically:
January 11, 2017
Communicated by:
Jeremy Tyson
Article copyright:
© Copyright 2017
American Mathematical Society