Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Trajectories escaping to infinity in finite time


Author: J. K. Langley
Journal: Proc. Amer. Math. Soc. 145 (2017), 2107-2117
MSC (2010): Primary 30D30
DOI: https://doi.org/10.1090/proc/13377
Published electronically: January 11, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If the function $ f$ is transcendental and meromorphic in the plane, and either $ f$ has finitely many poles or its inverse function has a logarithmic singularity over $ \infty $, then the equation $ \dot z = f(z)$ has infinitely many trajectories tending to infinity in finite increasing time.


References [Enhancements On Off] (What's this?)

  • [1] Walter Bergweiler and Alexandre Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355-373. MR 1344897, https://doi.org/10.4171/RMI/176
  • [2] Walter Bergweiler, Philip J. Rippon, and Gwyneth M. Stallard, Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 368-400. MR 2439666, https://doi.org/10.1112/plms/pdn007
  • [3] Louis Brickman and E. S. Thomas, Conformal equivalence of analytic flows, J. Differential Equations 25 (1977), no. 3, 310-324. MR 0447674
  • [4] Kevin A. Broughan, The structure of sectors of zeros of entire flows, Proceedings of the 17th Summer Conference on Topology and its Applications, 2003, pp. 379-394. MR 2077797
  • [5] Antonio Garijo, Armengol Gasull, and Xavier Jarque, Local and global phase portrait of equation $ \dot z=f(z)$, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 309-329. MR 2257435
  • [6] Gary G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37 (1988), no. 1, 88-104. MR 921748, https://doi.org/10.1112/jlms/s2-37.121.88
  • [7] Otomar Hájek, Notes on meromorphic dynamical systems. I, Czechoslovak Math. J. 16 (91) (1966), 14-27 (English, with Russian summary). MR 0194661
  • [8] Otomar Hájek, Notes on meromorphic dynamical systems. II, Czechoslovak Math. J. 16 (91) (1966), 28-35 (English, with Russian summary). MR 0194662
  • [9] Otomar Hájek, Notes on meromorphic dynamical systems. III, Czechoslovak Math. J. 16 (91) (1966), 36-40 (English, with Russian summary). MR 0194663
  • [10] W. K. Hayman, The local growth of power series: a survey of the Wiman-Valiron method, Canad. Math. Bull. 17 (1974), no. 3, 317-358. MR 0385095
  • [11] W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148
  • [12] D. J. Needham and A. C. King, On meromorphic complex differential equations, Dynam. Stability Systems 9 (1994), no. 2, 99-122. MR 1287510, https://doi.org/10.1080/02681119408806171
  • [13] Rolf Nevanlinna, Eindeutige analytische Funktionen, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd XLVI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953 (German). 2te Aufl. MR 0057330

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 30D30

Retrieve articles in all journals with MSC (2010): 30D30


Additional Information

J. K. Langley
Affiliation: School of Mathematical Sciences, University of Nottingham, NG7 2RD, United Kingdom
Email: james.langley@nottingham.ac.uk

DOI: https://doi.org/10.1090/proc/13377
Received by editor(s): May 11, 2016
Received by editor(s) in revised form: July 4, 2016
Published electronically: January 11, 2017
Communicated by: Jeremy Tyson
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society