Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Quantitative geometric and arithmetic results on projective surfaces


Author: Hungzen Liao
Journal: Proc. Amer. Math. Soc. 145 (2017), 2495-2504
MSC (2010): Primary 32H30, 32H22, 11J97
DOI: https://doi.org/10.1090/proc/13401
Published electronically: November 29, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we improve Ru's defect relation and the height inequality in the case when $ X$ is a normal projective surface and $ D_j$, $ 1 \leq j \leq q$, are big and asymptotic free divisors without irreducible common components on $ X$. As a consequence, we derive a sharp result in the qualitative statement.


References [Enhancements On Off] (What's this?)

  • [Aut1] Pascal Autissier, Géométries, points entiers et courbes entières, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 2, 221-239 (French, with English and French summaries). MR 2518077
  • [Car] H. Cartan,
    Sur les zéros des combinaisions linéarires de $ p$ fonctions holomorpes données,
    Mathematica (Cluj) 7 (1933), 5-29.
  • [CZ04a] P. Corvaja and U. Zannier, On integral points on surfaces, Ann. of Math. (2) 160 (2004), no. 2, 705-726. MR 2123936, https://doi.org/10.4007/annals.2004.160.705
  • [CZ04a] Pietro Corvaja and Umberto Zannier, On a general Thue's equation, Amer. J. Math. 126 (2004), no. 5, 1033-1055. MR 2089081
  • [EF02] Jan-Hendrik Evertse and Roberto G. Ferretti, Diophantine inequalities on projective varieties, Int. Math. Res. Not. 25 (2002), 1295-1330. MR 1903776, https://doi.org/10.1155/S107379280210804X
  • [EF08] Jan-Hendrik Evertse and Roberto G. Ferretti, A generalization of the Subspace Theorem with polynomials of higher degree, Diophantine approximation, Dev. Math., vol. 16, SpringerWienNewYork, Vienna, 2008, pp. 175-198. MR 2487693, https://doi.org/10.1007/978-3-211-74280-8_9
  • [Ful98] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
  • [Lan87] Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605
  • [Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. I, Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. MR 2095471
  • [Lev09] Aaron Levin, Generalizations of Siegel's and Picard's theorems, Ann. of Math. (2) 170 (2009), no. 2, 609-655. MR 2552103, https://doi.org/10.4007/annals.2009.170.609
  • [Lev14] Aaron Levin, On the Schmidt subspace theorem for algebraic points, Duke Math. J. 163 (2014), no. 15, 2841-2885. MR 3285859, https://doi.org/10.1215/00127094-2827017
  • [LR14] Hungzen Liao and Min Ru, A note on the Second Main Theorem for holomorphic curves into algebraic varieties, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), no. 4, 671-684. MR 3309947
  • [Ru97] Min Ru, On a general form of the second main theorem, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5093-5105. MR 1407711, https://doi.org/10.1090/S0002-9947-97-01913-2
  • [Ru04] Min Ru, A defect relation for holomorphic curves intersecting hypersurfaces, Amer. J. Math. 126 (2004), no. 1, 215-226. MR 2033568
  • [Ru09] Min Ru, Holomorphic curves into algebraic varieties, Ann. of Math. (2) 169 (2009), no. 1, 255-267. MR 2480605, https://doi.org/10.4007/annals.2009.169.255
  • [Ru15] M. Ru,
    A defect relation for holomorphic curves intersecting general divisors in projective varieties,
    J. of Geometric Analysis, first online: 15 October 2015.
  • [Ru16] M. Ru,
    A general Diophantine inequality,
    Functiones et Approximatio, to appear.
  • [Voj87] Paul Vojta, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, vol. 1239, Springer-Verlag, Berlin, 1987. MR 883451
  • [Voj97] Paul Vojta, On Cartan's theorem and Cartan's conjecture, Amer. J. Math. 119 (1997), no. 1, 1-17. MR 1428056
  • [Vojcm] P. Vojta,
    Diophantine approximation and Nevanlinna theory,
    CIME notes, page 231, 2007.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32H30, 32H22, 11J97

Retrieve articles in all journals with MSC (2010): 32H30, 32H22, 11J97


Additional Information

Hungzen Liao
Affiliation: Department of Mathematics, University of Houston, 4800 Calhoun Road, Houston, Texas 77004
Email: lhungzen@math.uh.edu

DOI: https://doi.org/10.1090/proc/13401
Received by editor(s): November 30, 2015
Received by editor(s) in revised form: March 25, 2016, June 8, 2016, and July 12, 2016
Published electronically: November 29, 2016
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society