Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dichotomy law for shrinking target problems in a nonautonomous dynamical system: Cantor series expansion


Authors: Yu Sun and Chun-Yun Cao
Journal: Proc. Amer. Math. Soc. 145 (2017), 2349-2359
MSC (2010): Primary 11K55; Secondary 28A80, 37F35
DOI: https://doi.org/10.1090/proc/13420
Published electronically: January 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ Q=\{q_k\}_{k\geq 1}$ be a sequence of positive integers with $ q_k\geq 2$ for every $ k\geq 1$. Then each point $ x\in [0,1]$ is attached with an infinite series expansion

$\displaystyle x=\frac {\varepsilon _1(x)}{q_1}+\frac {\varepsilon _2(x)}{q_1q_2}+\cdots +\frac {\varepsilon _n(x)}{q_1\cdots q_n}+\cdots , $

which is called the Cantor series expansion of $ x$. In this paper, we study the shrinking target problems for the system induced by the Cantor series expansion. More precisely, put $ T_{Q}^{n}(x)=q_1\cdots q_nx-\lfloor q_1\cdots q_nx\rfloor $; the shrinking target problem in such a nonautonomous system can be formulated as considering the size of the set

$\displaystyle \mathbb{E}_y(\varphi ):=\{x\in [0,1]:~ \vert T_{Q}^{n}(x)-y\vert<\varphi (n)$$\displaystyle \text { i. o. }n\},$

where $ y$ is a fixed point in $ [0,1]$ and $ \varphi : \mathbb{N}\to (0,1)$ is a positive function with $ \varphi (n)\to 0$ as $ n\to \infty $. It is proved that both the Lebesgue measure and the Hausdorff measure of $ \mathbb{E}_{y}(\varphi )$ fulfill a dichotomy law according to the divergence or convergence of certain series.

References [Enhancements On Off] (What's this?)

  • [1] Victor Beresnevich and Sanju Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math. (2) 164 (2006), no. 3, 971-992. MR 2259250, https://doi.org/10.4007/annals.2006.164.971
  • [2] Yann Bugeaud and Bao-Wei Wang, Distribution of full cylinders and the Diophantine properties of the orbits in $ \beta $-expansions, J. Fractal Geom. 1 (2014), no. 2, 221-241. MR 3230505, https://doi.org/10.4171/JFG/6
  • [3] G. Cantor, Uber die einfachen Zahlensysteme, Z. Math. Phys. 14 (1869), 121-128.
  • [4] N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math. 122 (2001), 1-27. MR 1826488, https://doi.org/10.1007/BF02809888
  • [5] P. Erdős and A. Rényi, On Cantor's series with convergent $ \sum 1/q_{n}$, Ann. Univ. Sci. Budapest. Eötvös. Sect. Math. 2 (1959), 93-109. MR 0126414
  • [6] P. Erdős and A. Rényi, Some further statistical properties of the digits in Cantor's series., Acta Math. Acad. Sci. Hungar. 10 (1959), 21-29 (unbound insert) (English, with Russian summary). MR 0107631
  • [7] Kenneth Falconer, Fractal geometry, Mathematical foundations and applications, John Wiley & Sons, Ltd., Chichester, 1990. MR 1102677
  • [8] Bassam Fayad, Mixing in the absence of the shrinking target property, Bull. London Math. Soc. 38 (2006), no. 5, 829-838. MR 2268368, https://doi.org/10.1112/S0024609306018546
  • [9] J. L. Fernández, M. V. Melián, and D. Pestana, Quantitative mixing results and inner functions, Math. Ann. 337 (2007), no. 1, 233-251. MR 2262783, https://doi.org/10.1007/s00208-006-0036-4
  • [10] Lior Fishman, Bill Mance, David Simmons, and Mariusz Urbański, Shrinking targets for nonautonomous dynamical systems corresponding to Cantor series expansions, Bull. Aust. Math. Soc. 92 (2015), no. 2, 205-213. MR 3392247, https://doi.org/10.1017/S0004972715000441
  • [11] Janos Galambos, Uniformly distributed sequences mod 1 and Cantor's series representation, Czechoslovak Math. J. 26(101) (1976), no. 4, 636-641. MR 0429808
  • [12] Glyn Harman, Metric number theory, London Mathematical Society Monographs. New Series, vol. 18, The Clarendon Press, Oxford University Press, New York, 1998. MR 1672558
  • [13] Richard Hill and Sanju L. Velani, The ergodic theory of shrinking targets, Invent. Math. 119 (1995), no. 1, 175-198. MR 1309976, https://doi.org/10.1007/BF01245179
  • [14] Richard Hill and Sanju L. Velani, Metric Diophantine approximation in Julia sets of expanding rational maps, Inst. Hautes Études Sci. Publ. Math. 85 (1997), 193-216. MR 1471868
  • [15] Richard Hill and Sanju L. Velani, The Jarník-Besicovitch theorem for geometrically finite Kleinian groups, Proc. London Math. Soc. (3) 77 (1998), no. 3, 524-550. MR 1643409, https://doi.org/10.1112/S0024611598000550
  • [16] Dong Han Kim, The shrinking target property of irrational rotations, Nonlinearity 20 (2007), no. 7, 1637-1643. MR 2335077, https://doi.org/10.1088/0951-7715/20/7/006
  • [17] Bing Li, Tomas Persson, Baowei Wang, and Jun Wu, Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions, Math. Z. 276 (2014), no. 3-4, 799-827. MR 3175161, https://doi.org/10.1007/s00209-013-1223-0
  • [18] Bing Li, Bao-Wei Wang, Jun Wu, and Jian Xu, The shrinking target problem in the dynamical system of continued fractions, Proc. Lond. Math. Soc. (3) 108 (2014), no. 1, 159-186. MR 3162824, https://doi.org/10.1112/plms/pdt017
  • [19] Fan Lü and Jun Wu, Diophantine analysis in beta-dynamical systems and Hausdorff dimensions, Adv. Math. 290 (2016), 919-937. MR 3451942, https://doi.org/10.1016/j.aim.2015.12.016
  • [20] B. Mance, Number theoretic applications of a class of Cantor series fractal functions. I, Acta Math. Hungar. 144 (2014), no. 2, 449-493. MR 3274409, https://doi.org/10.1007/s10474-014-0456-7
  • [21] François Maucourant, Dynamical Borel-Cantelli lemma for hyperbolic spaces, Israel J. Math. 152 (2006), 143-155. MR 2214457, https://doi.org/10.1007/BF02771980
  • [22] Alfréd Rényi, On the distribution of the digits in Cantor's series, Mat. Lapok 7 (1956), 77-100 (Hungarian, with Russian and English summaries). MR 0099968
  • [23] H. Reeve, Shrinking targets for countable Markov maps, arXiv:1107.4736 (2011).
  • [24] S. Seuret and B.-W. Wang, Quantitative recurrence properties in conformal iterated function systems, Adv. Math. 280 (2015), 472-505. MR 3350227, https://doi.org/10.1016/j.aim.2015.02.019
  • [25] LuMing Shen and BaoWei Wang, Shrinking target problems for beta-dynamical system, Sci. China Math. 56 (2013), no. 1, 91-104. MR 3016585, https://doi.org/10.1007/s11425-012-4478-8
  • [26] Bernd Stratmann, Fractal dimensions for Jarník limit sets of geometrically finite Kleinian groups; the semi-classical approach, Ark. Mat. 33 (1995), no. 2, 385-403. MR 1373031, https://doi.org/10.1007/BF02559716
  • [27] B. O. Stratmann and M. Urbański, Jarník and Julia: a Diophantine analysis for parabolic rational maps for geometrically finite Kleinian groups with parabolic elements, Math. Scand. 91 (2002), no. 1, 27-54. MR 1917680, https://doi.org/10.7146/math.scand.a-14377
  • [28] Bo Tan and Bao-Wei Wang, Quantitative recurrence properties for beta-dynamical system, Adv. Math. 228 (2011), no. 4, 2071-2097. MR 2836114, https://doi.org/10.1016/j.aim.2011.06.034
  • [29] Jimmy Tseng, On circle rotations and the shrinking target properties, Discrete Contin. Dyn. Syst. 20 (2008), no. 4, 1111-1122. MR 2379490, https://doi.org/10.3934/dcds.2008.20.1111
  • [30] Pál Turán, On the distribution of ``digits'' in Cantor-systems, Mat. Lapok 7 (1956), 71-76 (Hungarian, with Russian and English summaries). MR 0099967
  • [31] Mariusz Urbański, Diophantine analysis of conformal iterated function systems, Monatsh. Math. 137 (2002), no. 4, 325-340. MR 1947918, https://doi.org/10.1007/s00605-002-0483-2

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11K55, 28A80, 37F35

Retrieve articles in all journals with MSC (2010): 11K55, 28A80, 37F35


Additional Information

Yu Sun
Affiliation: Faculty of Science, JiangSu University, Zhenjiang 212013, People’s Republic of China
Email: sunyu@ujs.edu.cn

Chun-Yun Cao
Affiliation: College of Science, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
Email: caochunyun@mail.hzau.edu.cn

DOI: https://doi.org/10.1090/proc/13420
Keywords: Nonautonomous dynamical system, Cantor series expansion, shrinking target problem, Diophantine approximation, Hausdorff measure
Received by editor(s): April 17, 2016
Received by editor(s) in revised form: July 22, 2016
Published electronically: January 27, 2017
Additional Notes: The second author is the corresponding author
Communicated by: Nimish Shah
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society