Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Asymptotic normality of linear statistics of zeros of random polynomials

Author: Turgay Bayraktar
Journal: Proc. Amer. Math. Soc. 145 (2017), 2917-2929
MSC (2010): Primary 32A60, 32A25; Secondary 60F05, 60D05
Published electronically: December 30, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note, we prove a central limit theorem for smooth linear statistics of zeros of random polynomials which are linear combinations of orthogonal polynomials with iid standard complex Gaussian coefficients. Along the way, we obtain Bergman kernel asymptotics for weighted $ L^2$-space of polynomials endowed with varying measures of the form $ e^{-2n\varphi _n(z)}dz$ under suitable assumptions on the weight functions $ \varphi _n$.

References [Enhancements On Off] (What's this?)

  • [Baya] T. Bayraktar,
    Equidistribution of zeros of random holomorphic sections,
    Indiana Univ. Math. J., 65 (2016), no. 5, 1759-1793, DOI 10.1512/iumj.2016.65.5910.
  • [Bayb] T. Bayraktar,
    Zero distribution of random polynomials with fixed newton polytope, to appear in Michigan Math. J., arXiv:1503.00630.
  • [BCM] T. Bayraktar, D. Coman, and G. Marinescu,
    Equidistribution of zeros of random holomorphic sections and asymptotic normality,
    in preparation.
  • [Ber97] Bo Berndtsson, Uniform estimates with weights for the $ \overline \partial $-equation, J. Geom. Anal. 7 (1997), no. 2, 195-215. MR 1646760,
  • [Ber03] Bo Berndtsson, Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in complex and Riemannian geometry, Contemp. Math., vol. 332, Amer. Math. Soc., Providence, RI, 2003, pp. 1-17. MR 2016088,
  • [Ber09] Robert J. Berman, Bergman kernels for weighted polynomials and weighted equilibrium measures of $ \mathbb{C}^n$, Indiana Univ. Math. J. 58 (2009), no. 4, 1921-1946. MR 2542983,
  • [BL15] T. Bloom and N. Levenberg, Random polynomials and pluripotential-theoretic extremal functions, Potential Anal. 42 (2015), no. 2, 311-334. MR 3306686,
  • [BS07] Thomas Bloom and Bernard Shiffman, Zeros of random polynomials on $ \mathbb{C}^m$, Math. Res. Lett. 14 (2007), no. 3, 469-479. MR 2318650,
  • [BSZ00] Pavel Bleher, Bernard Shiffman, and Steve Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math. 142 (2000), no. 2, 351-395. MR 1794066,
  • [Chr91] Michael Christ, On the $ \overline \partial $ equation in weighted $ L^2$ norms in $ {\bf C}^1$, J. Geom. Anal. 1 (1991), no. 3, 193-230. MR 1120680,
  • [CMM14] D. Coman, X. Ma, and G. Marinescu,
    Equidistribution for sequences of line bundles on normal Kaehler spaces,
    arXiv:1412.8184, 2014.
  • [CMN15] D. Coman, G. Marinescu, and V.-A. Nguyên,
    Hölder singular metrics on big line bundles and equidistribution,
    arXiv:1506.01727, 2015.
  • [Del98] Henrik Delin, Pointwise estimates for the weighted Bergman projection kernel in $ \mathbf {C}^n$, using a weighted $ L^2$ estimate for the $ \overline \partial $ equation, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 4, 967-997 (English, with English and French summaries). MR 1656004
  • [Dem82] Jean-Pierre Demailly, Estimations $ L^{2}$ pour l'opérateur $ \bar \partial $ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète, Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 457-511 (French). MR 690650
  • [DMS12] Tien-Cuong Dinh, George Marinescu, and Viktoria Schmidt, Equidistribution of zeros of holomorphic sections in the non-compact setting, J. Stat. Phys. 148 (2012), no. 1, 113-136. MR 2950760,
  • [DS06] Tien-Cuong Dinh and Nessim Sibony, Distribution des valeurs de transformations méromorphes et applications, Comment. Math. Helv. 81 (2006), no. 1, 221-258 (French, with English summary). MR 2208805,
  • [Lin01] Niklas Lindholm, Sampling in weighted $ L^p$ spaces of entire functions in $ {\mathbb{C}}^n$ and estimates of the Bergman kernel, J. Funct. Anal. 182 (2001), no. 2, 390-426. MR 1828799,
  • [NS12] F. Nazarov and M. Sodin, Correlation functions for random complex zeroes: strong clustering and local universality, Comm. Math. Phys. 310 (2012), no. 1, 75-98. MR 2885614,
  • [ST97] Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Appendix B by Thomas Bloom, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. MR 1485778
  • [SZ08] Bernard Shiffman and Steve Zelditch, Number variance of random zeros on complex manifolds, Geom. Funct. Anal. 18 (2008), no. 4, 1422-1475. MR 2465693,
  • [SZ10] Bernard Shiffman and Steve Zelditch, Number variance of random zeros on complex manifolds, II: smooth statistics, Pure Appl. Math. Q. 6 (2010), no. 4, Special Issue: In honor of Joseph J. Kohn, 1145-1167. MR 2742043,
  • [ST04] Mikhail Sodin and Boris Tsirelson, Random complex zeroes. I. Asymptotic normality, Israel J. Math. 144 (2004), 125-149. MR 2121537,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 32A60, 32A25, 60F05, 60D05

Retrieve articles in all journals with MSC (2010): 32A60, 32A25, 60F05, 60D05

Additional Information

Turgay Bayraktar
Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
Address at time of publication: Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

Keywords: Central limit theorem, linear statistics, random polynomial, Bergman kernel asymptotics
Received by editor(s): March 2, 2016
Received by editor(s) in revised form: March 18, 2016, March 28, 2016, June 14, 2016, and August 2, 2016
Published electronically: December 30, 2016
Communicated by: Franc Forstneric
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society