Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Zeros of polynomials of derivatives of zeta functions


Author: Takashi Nakamura
Journal: Proc. Amer. Math. Soc. 145 (2017), 2849-2858
MSC (2010): Primary 11M26
DOI: https://doi.org/10.1090/proc/13460
Published electronically: January 25, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ P_s \in \mathcal {D}_s[X_0,X_1, \ldots ,X_l]$ be a polynomial whose coefficients are the ring of all general Dirichlet series which converge absolutely in the half-plane $ \Re (s) > 1/2$. In the present paper, we show that the function $ P_s(L(s), L^{(1)}(s),\ldots , L^{(l)}(s))$ has infinitely many zeros in the vertical strip $ D:= \{ s \in {\mathbb{C}} : 1/2 < \Re (s) <1\}$ if $ L(s)$ is hybridly universal and $ P_s \in \mathcal {D}_s[X_0,X_1, \ldots ,X_l]$ is a polynomial such that at least one of the degrees of $ X_1,\ldots ,X_l$ is greater than zero. As a corollary, we prove that the function $ (d^k / ds^k) P_s(L(s))$ with $ k \in {\mathbb{N}}$ has infinitely many zeros in the strip $ D$ when $ L(s)$ is hybridly universal and $ P_s \in \mathcal {D}_s[X]$ is a polynomial with degree greater than zero. The upper bounds for the numbers of zeros of $ P_s(L(s), L^{(1)}(s),\ldots , L^{(l)}(s))$ and $ (d^k / ds^k) P_s(L(s))$ are studied as well.


References [Enhancements On Off] (What's this?)

  • [1] Bruce C. Berndt, The number of zeros for $ \zeta ^{(k)}\,(s)$, J. London Math. Soc. (2) 2 (1970), 577-580. MR 0266874
  • [2] E. B. Bogomolny and J. P. Keating, Gutzwiller's trace formula and spectral statistics: beyond the diagonal approximation, Phys. Rev. Lett. 77 (1996), no. 8, 1472-1475.
  • [3] Henri Cohen, Number theory. Vol. II. Analytic and modern tools, Graduate Texts in Mathematics, vol. 240, Springer, New York, 2007. MR 2312338
  • [4] Steven Mark Gonek, ANALYTIC PROPERTIES OF ZETA AND L-FUNCTIONS, ProQuest LLC, Ann Arbor, MI, 1979. Thesis (Ph.D.)-University of Michigan. MR 2628587
  • [5] S. M. Gonek, S. J. Lester, and M. B. Milinovich, A note on simple $ a$-points of $ L$-functions, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4097-4103. MR 2957199, https://doi.org/10.1090/S0002-9939-2012-11275-4
  • [6] H. W. Gould and T. Shonhiwa, A Catalog of Interesting Dirichlet Series, Missouri J. Math. Sci. 20, Issue 1 (2008), 2-18.
  • [7] G. H. Hardy and M. Riesz, The general theory of Dirichlet's series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 18, Cambridge University press 1915.
  • [8] A. E. Ingham, Mean-Value Theorems in the Theory of the Riemann Zeta-Function, Proc. London Math. Soc. S2-27, no. 1, 273. MR 1575391, https://doi.org/10.1112/plms/s2-27.1.273
  • [9] Jerzy Kaczorowski and Mieczysław Kulas, On the non-trivial zeros off the critical line for $ L$-functions from the extended Selberg class, Monatsh. Math. 150 (2007), no. 3, 217-232. MR 2308550, https://doi.org/10.1007/s00605-006-0412-x
  • [10] Jerzy Kaczorowski, Some remarks on the universality of periodic $ L$-functions, New directions in value-distribution theory of zeta and $ L$-functions, Ber. Math., Shaker Verlag, Aachen, 2009, pp. 113-120. MR 2648987
  • [11] A. Laurinchikas, Zeros of the derivative of the Riemann zeta-function, Litovsk. Mat. Sb. 25 (1985), no. 3, 111-118 (Russian, with French and Lithuanian summaries). MR 823648
  • [12] Antanas Laurinčikas, Limit theorems for the Riemann zeta-function, Mathematics and its Applications, vol. 352, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1376140
  • [13] Antanas Laurinčikas, Universality of composite functions, Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu, B34, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, pp. 191-204. MR 3014846
  • [14] Norman Levinson and Hugh L. Montgomery, Zeros of the derivatives of the Riemann zetafunction, Acta Math. 133 (1974), 49-65. MR 0417074
  • [15] Thierry Meyrath, On the universality of derived functions of the Riemann zeta-function, J. Approx. Theory 163 (2011), no. 10, 1419-1426. MR 2832733, https://doi.org/10.1016/j.jat.2011.05.004
  • [16] Kohji Matsumoto, A survey on the theory of universality for zeta and $ L$-functions, Number theory, Ser. Number Theory Appl., vol. 11, World Sci. Publ., Hackensack, NJ, 2015, pp. 95-144. MR 3382056
  • [17] Takashi Nakamura and Łukasz Pańkowski, On universality for linear combinations of L-functions, Monatsh. Math. 165 (2012), no. 3-4, 433-446. MR 2891263, https://doi.org/10.1007/s00605-011-0283-7
  • [18] Takashi Nakamura and Łukasz Pańkowski, On complex zeros off the critical line for non-monomial polynomial of zeta-functions, Math. Z. 284 (2016), no. 1-2, 23-39. MR 3545482, https://doi.org/10.1007/s00209-016-1643-8
  • [19] Takashi Nakamura and Łukasz Pańkowski, On zeros and $ c$-values of Epstein zeta-functions, Šiauliai Math. Semin. 8(16) (2013), 181-195. MR 3265053
  • [20] Takashi Nakamura, A modified Riemann zeta distribution in the critical strip, Proc. Amer. Math. Soc. 143 (2015), no. 2, 897-905. MR 3283676, https://doi.org/10.1090/S0002-9939-2014-12279-9
  • [21] Łukasz Pańkowski, Hybrid joint universality theorem for Dirichlet $ L$-functions, Acta Arith. 141 (2010), no. 1, 59-72. MR 2570338, https://doi.org/10.4064/aa141-1-3
  • [22] Brad Rodgers, Macroscopic pair correlation of the Riemann zeroes for smooth test functions, Q. J. Math. 64 (2013), no. 4, 1197-1219. MR 3151612, https://doi.org/10.1093/qmath/has024
  • [23] Andreas Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1935), no. 1, 514-521 (German). MR 1512953, https://doi.org/10.1007/BF01448042
  • [24] Jörn Steuding, Value-distribution of $ L$-functions, Lecture Notes in Mathematics, vol. 1877, Springer, Berlin, 2007. MR 2330696
  • [25] Jeffrey Stopple, Notes on $ \log (\zeta (s))''$, Rocky Mountain J. Math. 46 (2016), no. 5, 1701-1715. MR 3580807, https://doi.org/10.1216/RMJ-2016-46-5-1701
  • [26] R. Takloo-Bighash, Points of bounded height on algebraic varieties, (Unpublished course notes), http://homepages.math.uic.edu/~rtakloo/papers/ipm/ipm.pdf
  • [27] S. M. Voronin, A theorem on the ``universality'' of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 3, 475-486, 703 (Russian). MR 0472727

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11M26

Retrieve articles in all journals with MSC (2010): 11M26


Additional Information

Takashi Nakamura
Affiliation: Department of Liberal Arts, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba-ken, 278-8510, Japan
Email: nakamuratakashi@rs.tus.ac.jp

DOI: https://doi.org/10.1090/proc/13460
Keywords: Hybrid universality, zeros of the derivatives of zeta functions
Received by editor(s): May 19, 2016
Received by editor(s) in revised form: August 22, 2016
Published electronically: January 25, 2017
Additional Notes: The author was partially supported by JSPS grant 16K05077 and Japan-France Research Cooperative Program (JSPS and CNRS).
Communicated by: Ken Ono
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society