Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The scale function and lattices


Author: G. A. Willis
Journal: Proc. Amer. Math. Soc. 145 (2017), 3185-3190
MSC (2010): Primary 22D05; Secondary 20E34, 22E40
DOI: https://doi.org/10.1090/proc/13449
Published electronically: January 23, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that, given a lattice $ H$ in a totally disconnected, locally compact group $ G$, the contraction subgroups in $ G$ and the values of the scale function on $ G$ are determined by their restrictions to $ H$. Group theoretic properties intrinsic to the lattice, such as being periodic or infinitely divisible, are then seen to imply corresponding properties of $ G$.


References [Enhancements On Off] (What's this?)

  • [1] Uri Bader, Pierre-Emmanuel Caprace, Tsachik Gelander, and Shahar Mozes, Simple groups without lattices, Bull. Lond. Math. Soc. 44 (2012), no. 1, 55-67. MR 2881324, https://doi.org/10.1112/blms/bdr061
  • [2] Hyman Bass and Alexander Lubotzky, Tree lattices, with appendices by H. Bass, L. Carbone, A. Lubotzky, G. Rosenberg and J. Tits, Progress in Mathematics, vol. 176, Birkhäuser Boston, Inc., Boston, MA, 2001. MR 1794898
  • [3] Udo Baumgartner, Scales for co-compact embeddings of virtually free groups, Geom. Dedicata 130 (2007), 163-175. MR 2365784, https://doi.org/10.1007/s10711-007-9212-2
  • [4] Udo Baumgartner, Jacqui Ramagge, and George A. Willis, Scale-multiplicative semigroups and geometry: automorphism groups of trees, Groups Geom. Dyn. 10 (2016), no. 3, 1051-1075. MR 3551189, https://doi.org/10.4171/GGD/376
  • [5] Udo Baumgartner and George A. Willis, Contraction groups and scales of automorphisms of totally disconnected locally compact groups, Israel J. Math. 142 (2004), 221-248. MR 2085717, https://doi.org/10.1007/BF02771534
  • [6] Meenaxi Bhattacharjee and Dugald MacPherson, Strange permutation representations of free groups, J. Aust. Math. Soc. 74 (2003), no. 2, 267-285. MR 1957883, https://doi.org/10.1017/S1446788700003293
  • [7] Adrien Le Boudec, Groups acting on trees with almost prescribed local action, Comment. Math. Helv. 91 (2016), no. 2, 253-293. MR 3493371, https://doi.org/10.4171/CMH/385
  • [8] Marc Burger and Shahar Mozes, Lattices in product of trees, Inst. Hautes Études Sci. Publ. Math. 92 (2000), 151-194 (2001). MR 1839489
  • [9] Pierre-Emmanuel Caprace and Nicolas Monod, Decomposing locally compact groups into simple pieces, Math. Proc. Cambridge Philos. Soc. 150 (2011), no. 1, 97-128. MR 2739075, https://doi.org/10.1017/S0305004110000368
  • [10] Pierre-Emmanuel Caprace, Colin D. Reid, and George A. Willis, Limits of contraction groups and the Tits core, J. Lie Theory 24 (2014), no. 4, 957-967. MR 3328731
  • [11] Pierre-Emmanuel Caprace, Colin D. Reid, and George A. Willis, Locally normal subgroups of simple locally compact groups, C. R. Math. Acad. Sci. Paris 351 (2013), no. 17-18, 657-661 (English, with English and French summaries). MR 3124321, https://doi.org/10.1016/j.crma.2013.09.010
  • [12] D. van Dantzig, Zur topologischen Algebra, Math. Ann. 107 (1933), no. 1, 587-626 (German). MR 1512818, https://doi.org/10.1007/BF01448911
  • [13] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Bd. 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
  • [14] Wojciech Jaworski, On contraction groups of automorphisms of totally disconnected locally compact groups, Israel J. Math. 172 (2009), 1-8. MR 2534235, https://doi.org/10.1007/s11856-009-0059-0
  • [15] A. Kepert and G. Willis, Scale functions and tree ends, J. Aust. Math. Soc. 70 (2001), no. 2, 273-292. MR 1815284, https://doi.org/10.1017/S1446788700002640
  • [16] Alexander Lubotzky, Lattices in rank one Lie groups over local fields, Geom. Funct. Anal. 1 (1991), no. 4, 406-431. MR 1132296, https://doi.org/10.1007/BF01895641
  • [17] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825
  • [18] Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
  • [19] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
  • [20] Yehuda Shalom, Rigidity of commensurators and irreducible lattices, Invent. Math. 141 (2000), no. 1, 1-54. MR 1767270, https://doi.org/10.1007/s002220000064
  • [21] G. Willis, The structure of totally disconnected, locally compact groups, Math. Ann. 300 (1994), no. 2, 341-363. MR 1299067, https://doi.org/10.1007/BF01450491
  • [22] George A. Willis, Further properties of the scale function on a totally disconnected group, J. Algebra 237 (2001), no. 1, 142-164. MR 1813900, https://doi.org/10.1006/jabr.2000.8584

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 22D05, 20E34, 22E40

Retrieve articles in all journals with MSC (2010): 22D05, 20E34, 22E40


Additional Information

G. A. Willis
Affiliation: School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Building V, Callaghan, NSW 2308, Australia
Email: George.Willis@newcastle.edu.au

DOI: https://doi.org/10.1090/proc/13449
Keywords: Scale function, finite co-volume, lattice, uniscalar, anisotropic
Received by editor(s): July 7, 2015
Received by editor(s) in revised form: August 27, 2016
Published electronically: January 23, 2017
Additional Notes: The author was supported by ARC Discovery Project DP150100060
Communicated by: Kevin Whyte
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society