Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a counterexample related to weighted weak type estimates for singular integrals


Authors: Marcela Caldarelli, Andrei K. Lerner and Sheldy Ombrosi
Journal: Proc. Amer. Math. Soc. 145 (2017), 3005-3012
MSC (2010): Primary 42B20, 42B25
DOI: https://doi.org/10.1090/proc/13496
Published electronically: January 6, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the Hilbert transform does not map $ L^1(M_{\Phi }w)$ to $ L^{1,\infty }(w)$ for every Young function $ \Phi $ growing more slowly than $ t\log \log ({\rm e}^{\rm e}+t)$. Our proof is based on a construction of M.C. Reguera and C. Thiele.


References [Enhancements On Off] (What's this?)

  • [1] A. Cordoba and C. Fefferman, A weighted norm inequality for singular integrals, Studia Math. 57 (1976), no. 1, 97-101. MR 0420115
  • [2] Alberto Criado and Fernando Soria, Muckenhoupt-Wheeden conjectures in higher dimensions, Studia Math. 233 (2016), no. 1, 25-45. MR 3503069
  • [3] D. Cruz-Uribe and C. Pérez, Two weight extrapolation via the maximal operator, J. Funct. Anal. 174 (2000), no. 1, 1-17. MR 1761362, https://doi.org/10.1006/jfan.2000.3570
  • [4] Francesco Di Plinio and Andrei K. Lerner, On weighted norm inequalities for the Carleson and Walsh-Carleson operator, J. Lond. Math. Soc. (2) 90 (2014), no. 3, 654-674. MR 3291794, https://doi.org/10.1112/jlms/jdu049
  • [5] Carlos Domingo-Salazar, Michael Lacey, and Guillermo Rey, Borderline weak-type estimates for singular integrals and square functions, Bull. Lond. Math. Soc. 48 (2016), no. 1, 63-73. MR 3455749, https://doi.org/10.1112/blms/bdv090
  • [6] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. MR 0284802
  • [7] Tuomas Hytönen and Carlos Pérez, The $ L(\log L)^\epsilon $ endpoint estimate for maximal singular integral operators, J. Math. Anal. Appl. 428 (2015), no. 1, 605-626. MR 3327006, https://doi.org/10.1016/j.jmaa.2015.03.017
  • [8] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), no. 2, 296-308. MR 1260114, https://doi.org/10.1112/jlms/49.2.296
  • [9] Maria Carmen Reguera, On Muckenhoupt-Wheeden conjecture, Adv. Math. 227 (2011), no. 4, 1436-1450. MR 2799801, https://doi.org/10.1016/j.aim.2011.03.009
  • [10] Maria Carmen Reguera and Christoph Thiele, The Hilbert transform does not map $ L^1(Mw)$ to $ L^{1,\infty }(w)$, Math. Res. Lett. 19 (2012), no. 1, 1-7. MR 2923171, https://doi.org/10.4310/MRL.2012.v19.n1.a1

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 42B20, 42B25

Retrieve articles in all journals with MSC (2010): 42B20, 42B25


Additional Information

Marcela Caldarelli
Affiliation: Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
Email: marcela.caldarelli@uns.edu.ar

Andrei K. Lerner
Affiliation: Department of Mathematics, Bar-Ilan University, 5290002 Ramat Gan, Israel
Email: lernera@math.biu.ac.il

Sheldy Ombrosi
Affiliation: Departamento de Matemática, Universidad Nacional del Sur, Bahía Blanca, 8000, Argentina
Email: sombrosi@uns.edu.ar

DOI: https://doi.org/10.1090/proc/13496
Keywords: Hilbert transform, weights, weak type estimates.
Received by editor(s): July 9, 2015
Received by editor(s) in revised form: August 11, 2016
Published electronically: January 6, 2017
Additional Notes: The second author was supported by the Israel Science Foundation (grant No. 953/13).
Communicated by: Alexander Iosevich
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society