Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Interval decomposition of infinite zigzag persistence modules


Author: Magnus Bakke Botnan
Journal: Proc. Amer. Math. Soc. 145 (2017), 3571-3577
MSC (2010): Primary 55N99; Secondary 16G20
DOI: https://doi.org/10.1090/proc/13465
Published electronically: January 23, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that every pointwise finite-dimensional infinite zigzag persistence module decomposes into a direct sum of interval persistence modules.


References [Enhancements On Off] (What's this?)

  • [1] Gorô Azumaya, Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J. 1 (1950), 117-124. MR 0037832
  • [2] Magnus Bakke Botnan and Michael Lesnick, Algebraic stability of zigzag persistence modules, arXiv preprint arXiv:1604.00655 (2016).
  • [3] Gunnar Carlsson, Vin De Silva, and Dmitriy Morozov, Zigzag persistent homology and real-valued functions, Proceedings of the twenty-fifth annual symposium on Computational geometry, ACM, 2009, pp. 247-256.
  • [4] Gunnar Carlsson and Vin de Silva, Zigzag persistence, Found. Comput. Math. 10 (2010), no. 4, 367-405. MR 2657946, https://doi.org/10.1007/s10208-010-9066-0
  • [5] Jérémy Cochoy and Steve Oudot, Decomposition of exact pfd persistence bimodules, arXiv preprint arXiv:1605.09726 (2016).
  • [6] William Crawley-Boevey, Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl. 14 (2015), no. 5, 1550066, 8. MR 3323327, https://doi.org/10.1142/S0219498815500668
  • [7] Peter Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71-103; correction, ibid. 6 (1972), 309 (German, with English summary). MR 0332887
  • [8] Steve Y. Oudot, Persistence theory: from quiver representations to data analysis, Mathematical Surveys and Monographs, vol. 209, American Mathematical Society, Providence, RI, 2015. MR 3408277
  • [9] Claus Ringel, Introduction to representation theory of finite dimensional algebras, http://www.math.uni-bielefeld.de/~ringel/lectures/izmir/, 2014 (accessed September 16 2016).
  • [10] Claus Michael Ringel, The representations of quivers of type $ A_n$. A fast approach., http://www.math.uni-bielefeld.de/~ringel/opus/a_n.pdf, (accessed September 16 2016).
  • [11] Cary Webb, Decomposition of graded modules, Proc. Amer. Math. Soc. 94 (1985), no. 4, 565-571. MR 792261, https://doi.org/10.2307/2044864

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55N99, 16G20

Retrieve articles in all journals with MSC (2010): 55N99, 16G20


Additional Information

Magnus Bakke Botnan
Affiliation: Department of Mathematics, Technical University of Munich, Boltzmannstr. 3, D-85748 Garching bei München, Germany
Email: botnan@ma.tum.de

DOI: https://doi.org/10.1090/proc/13465
Received by editor(s): June 17, 2016
Received by editor(s) in revised form: September 1, 2016
Published electronically: January 23, 2017
Communicated by: Michael A. Mandell
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society