Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weyl's Theorem for pairs of commuting hyponormal operators


Authors: Sameer Chavan and Raúl Curto
Journal: Proc. Amer. Math. Soc. 145 (2017), 3369-3375
MSC (2010): Primary 47A13; Secondary 47B20
DOI: https://doi.org/10.1090/proc/13479
Published electronically: April 12, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbf {T}$ be a pair of commuting hyponormal operators satisfying the so-called quasitriangular property

$\displaystyle \textrm {dim} \; \textrm {ker} \; (\mathbf {T}-\boldsymbol \lambd... ...ge \textrm {dim} \; \textrm {ker} \; (\mathbf {T} - {\boldsymbol \lambda })^*, $

for every $ \boldsymbol \lambda $ in the Taylor spectrum $ \sigma (\mathbf {T})$ of $ \mathbf {T}$. We prove that the Weyl spectrum of $ \mathbf {T}$, $ \omega (\mathbf {T})$, satisfies the identity

$\displaystyle \omega (\mathbf {T})=\sigma (\mathbf {T}) \setminus \pi _{00}(\mathbf {T}), $

where $ \pi _{00}(\mathbf {T})$ denotes the set of isolated eigenvalues of finite multiplicity.

Our method of proof relies on a (strictly $ 2$-variable) fact about the topological boundary of the Taylor spectrum; as a result, our proof does not hold for $ d$-tuples of commuting hyponormal operators with $ d>2$.


References [Enhancements On Off] (What's this?)

  • [1] William Arveson, Subalgebras of $ C^*$-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159-228. MR 1668582, https://doi.org/10.1007/BF02392585
  • [2] John J. Buoni, A. T. Dash, and Bhushan L. Wadhwa, Joint Browder spectrum, Pacific J. Math. 94 (1981), no. 2, 259-263. MR 628578
  • [3] Sameer Chavan, Irreducible tuples without the boundary property, Canad. Math. Bull. 58 (2015), no. 1, 9-18. MR 3303203, https://doi.org/10.4153/CMB-2014-051-0
  • [4] Sameer Chavan and V. M. Sholapurkar, Completely hyperexpansive tuples of finite order, J. Math. Anal. Appl. 447 (2017), no. no. 2, 1009-1026. MR 3573129
  • [5] Muneo Chō, On the joint Weyl spectrum. III, Acta Sci. Math. (Szeged) 56 (1992), no. 3-4, 365-367 (1993). MR 1222080
  • [6] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288. MR 0201969
  • [7] Raul E. Curto, Fredholm and invertible $ n$-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), no. 1, 129-159. MR 613789, https://doi.org/10.2307/1998391
  • [8] Raúl E. Curto, Connections between Harte and Taylor spectra, Rev. Roumaine Math. Pures Appl. 31 (1986), no. 3, 203-215. MR 847027
  • [9] Raúl E. Curto, Applications of several complex variables to multiparameter spectral theory, Surveys of some recent results in operator theory, Vol. II, Pitman Res. Notes Math. Ser., vol. 192, Longman Sci. Tech., Harlow, 1988, pp. 25-90. MR 976843
  • [10] Raúl E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), no. 2, 407-413. MR 943057, https://doi.org/10.2307/2047152
  • [11] Răzvan Gelca, Compact perturbations of Fredholm $ n$-tuples. II, Integral Equations Operator Theory 19 (1994), no. 3, 360-363. MR 1280129, https://doi.org/10.1007/BF01203671
  • [12] Young Min Han and An-Hyun Kim, Weyl's theorem in several variables, J. Math. Anal. Appl. 370 (2010), no. 2, 538-542. MR 2651675, https://doi.org/10.1016/j.jmaa.2010.04.032
  • [13] Robin Harte, Invertibility and singularity for bounded linear operators, Monographs and Textbooks in Pure and Applied Mathematics, vol. 109, Marcel Dekker, Inc., New York, 1988. MR 920812
  • [14] W. Lee, Lecture Notes on Operator Theory, Graduate Texts, Spring 2010, Seoul National University, available online.
  • [15] R. Levy, On the Fredholm and Weyl spectra of several commuting operators, Integral Equations Operator Theory 59 (2007), no. 1, 35-51. MR 2351273, https://doi.org/10.1007/s00020-007-1507-z
  • [16] Mihai Putinar, On Weyl spectrum in several variables, Math. Japon. 50 (1999), no. 3, 355-357. MR 1727658
  • [17] Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172-191. MR 0268706
  • [18] Joseph L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38. MR 0271741

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 47A13, 47B20

Retrieve articles in all journals with MSC (2010): 47A13, 47B20


Additional Information

Sameer Chavan
Affiliation: Department of Mathematics & Statistics, Indian Institute of Technology, Kanpur, 208016, India
Email: chavan@iitk.ac.in

Raúl Curto
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: raul-curto@uiowa.edu

DOI: https://doi.org/10.1090/proc/13479
Keywords: Hyponormality, Taylor spectrum, Weyl spectrum
Received by editor(s): August 27, 2016
Published electronically: April 12, 2017
Additional Notes: The second named author was partially supported by NSF Grant DMS-1302666.
Communicated by: Stephan Ramon Garcia
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society