Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Gradient estimates of mean curvature equations with semi-linear oblique boundary value problems


Authors: Jinju Xu and Lu Xu
Journal: Proc. Amer. Math. Soc. 145 (2017), 3481-3491
MSC (2010): Primary 35B45; Secondary 35J92, 35B50
DOI: https://doi.org/10.1090/proc/13483
Published electronically: January 31, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the semi-linear oblique boundary value problem for the prescribed mean curvature equation. We find a suitable auxiliary function and use the maximum principle to get the gradient estimate. As a consequence, we obtain the corresponding existence theorem for a class of mean curvature equations with semi-linear oblique derivative problems.


References [Enhancements On Off] (What's this?)

  • [1] E. Bombieri, E. De Giorgi, and M. Miranda, Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Rational Mech. Anal. 32 (1969), 255-267 (Italian). MR 0248647
  • [2] Paul Concus and Robert Finn, On capillary free surfaces in a gravitational field, Acta Math. 132 (1974), 207-223. MR 0670443
  • [3] Robert Finn, On equations of minimal surface type, Ann. of Math. (2) 60 (1954), 397-416. MR 0066533
  • [4] Claus Gerhardt, Global regularity of the solutions to the capillarity problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1976), no. 1, 157-175. MR 0602007
  • [5] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
  • [6] Bo Guan and Joel Spruck, Interior gradient estimates for solutions of prescribed curvature equations of parabolic type, Indiana Univ. Math. J. 40 (1991), no. 4, 1471-1481. MR 1142724, https://doi.org/10.1512/iumj.1991.40.40066
  • [7] Howard Jenkins and James Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170-187. MR 0222467
  • [8] N. Korevaar, An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation, Nonlinear functional analysis and its applications, Part 2 (Berkeley, Calif., 1983) Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 81-89. MR 843597
  • [9] Nicholas J. Korevaar, Maximum principle gradient estimates for the capillary problem, Comm. Partial Differential Equations 13 (1988), no. 1, 1-31. MR 914812, https://doi.org/10.1080/03605308808820536
  • [10] O. A. Ladyzhenskaya and N. N. Uraltseva, Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Comm. Pure Appl. Math. 23 (1970), 677-703. MR 0265745
  • [11] Yan Yan Li, Interior gradient estimates for solutions of certain fully nonlinear elliptic equations, J. Differential Equations 90 (1991), no. 1, 172-185. MR 1094454, https://doi.org/10.1016/0022-0396(91)90166-7
  • [12] Gary M. Lieberman, Gradient estimates for capillary-type problems via the maximum principle, Comm. Partial Differential Equations 13 (1988), no. 1, 33-59. MR 914813, https://doi.org/10.1080/03605308808820537
  • [13] G. M. Lieberman, Oblique boundary value problems for elliptic equations, World Scientific Publishing. (2013).
  • [14] X. N. Ma and G. Q. Qiu, The Neumann problem for Hessian equations, arXiv:1508.00196v1.
  • [15] Xinan Ma and Jinju Xu, Gradient estimates of mean curvature equations with Neumann boundary value problems, Adv. Math. 290 (2016), 1010-1039. MR 3451945, https://doi.org/10.1016/j.aim.2015.10.031
  • [16] J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413-496. MR 0282058
  • [17] Leon Simon, Interior gradient bounds for non-uniformly elliptic equations, Indiana Univ. Math. J. 25 (1976), no. 9, 821-855. MR 0412605
  • [18] Leon Simon and Joel Spruck, Existence and regularity of a capillary surface with prescribed contact angle, Arch. Rational Mech. Anal. 61 (1976), no. 1, 19-34. MR 0487724
  • [19] Joel Spruck, On the existence of a capillary surface with prescribed contact angle, Comm. Pure Appl. Math. 28 (1975), 189-200. MR 0398278
  • [20] Neil S. Trudinger, Gradient estimates and mean curvature, Math. Z. 131 (1973), 165-175. MR 0324187
  • [21] Neil S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rational Mech. Anal. 111 (1990), no. 2, 153-179. MR 1057653, https://doi.org/10.1007/BF00375406
  • [22] N. N. Ural'tseva, The solvability of the capillarity problem, Vestnik Leningrad. Univ. 19 Mat. Meh. Astronom. Vyp. 4 (1973), 54-64, 152 (Russian, with English summary). MR 0638359
  • [23] Xu-Jia Wang, Interior gradient estimates for mean curvature equations, Math. Z. 228 (1998), no. 1, 73-81. MR 1617971, https://doi.org/10.1007/PL00004604
  • [24] Jinju Xu, A new proof of gradient estimates for mean curvature equations with oblique boundary conditions, Commun. Pure Appl. Anal. 15 (2016), no. 5, 1719-1742. MR 3538877, https://doi.org/10.3934/cpaa.2016010

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35B45, 35J92, 35B50

Retrieve articles in all journals with MSC (2010): 35B45, 35J92, 35B50


Additional Information

Jinju Xu
Affiliation: Department of Mathematics, Shanghai Normal University, Shanghai 200234 People’s Republic of China – and – Department of Mathematics, Shanghai University, Shanghai 200444 People’s Republic of China
Email: jjxujane@shu.edu.cn

Lu Xu
Affiliation: Institute of Mathematics, Hunan University, Changsha 410082 People’s Republic of China
Email: xulu@hnu.edu.cn

DOI: https://doi.org/10.1090/proc/13483
Keywords: Gradient estimate, oblique boundary value, maximum principle
Received by editor(s): February 27, 2016
Received by editor(s) in revised form: September 15, 2016
Published electronically: January 31, 2017
Additional Notes: The research of the first author was supported by NSFC No.11601311, and the research of the second author was supported by NSFC No.11371360.
Communicated by: Guofang Wei
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society