Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ \mathbb{Z}/2$-equivariant and $ \mathbb{R}$-motivic stable stems


Authors: Daniel Dugger and Daniel C. Isaksen
Journal: Proc. Amer. Math. Soc. 145 (2017), 3617-3627
MSC (2010): Primary 55Q10; Secondary 55Q91
DOI: https://doi.org/10.1090/proc/13505
Published electronically: February 21, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish an isomorphism between the stable homotopy groups $ \hat {\pi }^{\mathbb{R}}_{s,w}$ of the 2-completed $ \mathbb{R}$-motivic sphere spectrum and the stable homotopy groups $ \hat {\pi }^{\mathbb{Z}/2}_{s,w}$ of the 2-completed $ \mathbb{Z}/2$-equivariant sphere spectrum, valid in the range $ s \geq 3 w - 5$ or $ s \leq -1$.


References [Enhancements On Off] (What's this?)

  • [1] Shôrô Araki and Kouyemon Iriye, Equivariant stable homotopy groups of spheres with involutions. I, Osaka J. Math. 19 (1982), no. 1, 1-55. MR 656233
  • [2] Glen E. Bredon, Equivariant homotopy, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 281-292. MR 0250303
  • [3] Daniel Dugger and Daniel C. Isaksen, Low-dimensional Milnor-Witt stems over $ \mathbb{R}$ (2015), to appear in Annals $ K$-Theory.
  • [4] Po Hu and Igor Kriz, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence, Topology 40 (2001), no. 2, 317-399. MR 1808224, https://doi.org/10.1016/S0040-9383(99)00065-8
  • [5] P. Hu, I. Kriz, and K. Ormsby, Convergence of the motivic Adams spectral sequence, J. K-Theory 7 (2011), no. 3, 573-596. MR 2811716, https://doi.org/10.1017/is011003012jkt150
  • [6] Kouyemon Iriye, Equivariant stable homotopy groups of spheres with involutions. II, Osaka J. Math. 19 (1982), no. 4, 733-743. MR 687770
  • [7] Fabien Morel, An introduction to $ \mathbb{A}^1$-homotopy theory, Contemporary developments in algebraic $ K$-theory, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, pp. 357-441 (electronic). MR 2175638
  • [8] Fabien Morel, The stable $ {\mathbb{A}}^1$-connectivity theorems, $ K$-Theory 35 (2005), no. 1-2, 1-68. MR 2240215, https://doi.org/10.1007/s10977-005-1562-7
  • [9] Fabien Morel and Vladimir Voevodsky, $ {\bf A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45-143 (2001). MR 1813224
  • [10] Markus Szymik, Equivariant stable stems for prime order groups, J. Homotopy Relat. Struct. 2 (2007), no. 1, 141-162. MR 2369156
  • [11] Vladimir Voevodsky, Motivic cohomology with $ {\bf Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59-104. MR 2031199, https://doi.org/10.1007/s10240-003-0010-6
  • [12] Vladimir Voevodsky, Motivic Eilenberg-Maclane spaces, Publ. Math. Inst. Hautes Études Sci. 112 (2010), 1-99. MR 2737977, https://doi.org/10.1007/s10240-010-0024-9

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 55Q10, 55Q91

Retrieve articles in all journals with MSC (2010): 55Q10, 55Q91


Additional Information

Daniel Dugger
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: ddugger@math.uoregon.edu

Daniel C. Isaksen
Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
Email: isaksen@wayne.edu

DOI: https://doi.org/10.1090/proc/13505
Received by editor(s): March 30, 2016
Received by editor(s) in revised form: September 18, 2016
Published electronically: February 21, 2017
Communicated by: Michael A. Mandell
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society