Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Poisson distribution, abstract fractional difference equations, and stability


Author: Carlos Lizama
Journal: Proc. Amer. Math. Soc. 145 (2017), 3809-3827
MSC (2010): Primary 39A13, 39A14, 39A06, 39A60, 47D06, 47D99
DOI: https://doi.org/10.1090/proc/12895
Published electronically: May 24, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the initial value problem

$\displaystyle \left \{\begin {array}{rll} _C\Delta ^{\alpha } u(n) &= Au(n+1), \quad n \in \mathbb{N}_0; \\ u(0) &= u_0 \in X, \end{array}\right .$ ($ *$)

when $ A$ is a closed linear operator with domain $ D(A)$ defined on a Banach space $ X$. We introduce a method based on the Poisson distribution to show existence and qualitative properties of solutions for the problem $ (*)$, using operator-theoretical conditions on $ A$. We show how several properties for fractional differences, including their own definition, are connected with the continuous case by means of sampling using the Poisson distribution. We prove necessary conditions for stability of solutions, that are only based on the spectral properties of the operator $ A$ in the case of Hilbert spaces.

References [Enhancements On Off] (What's this?)

  • [1] Thabet Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl. 62 (2011), no. 3, 1602-1611. MR 2824747 (2012f:26005), https://doi.org/10.1016/j.camwa.2011.03.036
  • [2] Thabet Abdeljawad and Ferhan M. Atici, On the definitions of nabla fractional operators, Abstr. Appl. Anal. (2012), Art. ID 406757, 13. MR 2984037
  • [3] Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588 (2003g:47072)
  • [4] Ferhan M. Atici and Paul W. Eloe, A transform method in discrete fractional calculus, Int. J. Difference Equ. 2 (2007), no. 2, 165-176. MR 2493595 (2010a:26008)
  • [5] Ferhan M. Atici and Paul W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), no. 3, 981-989. MR 2457438 (2009g:39037), https://doi.org/10.1090/S0002-9939-08-09626-3
  • [6] Ferhan M. Atıcı and Paul W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ. Special Edition I (2009), No. 3, 12 pp. MR 2558828 (2010k:26038)
  • [7] Ferhan M. Atıcı and Sevgi Şengül, Modeling with fractional difference equations, J. Math. Anal. Appl. 369 (2010), no. 1, 1-9. MR 2643839 (2011c:39002), https://doi.org/10.1016/j.jmaa.2010.02.009
  • [8] Ferhan M. Atici and Paul W. Eloe, Linear systems of fractional nabla difference equations, Rocky Mountain J. Math. 41 (2011), no. 2, 353-370. MR 2794443 (2012c:39003), https://doi.org/10.1216/RMJ-2011-41-2-353
  • [9] Ferhan M. Atıcı and Paul W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17 (2011), no. 4, 445-456. MR 2783359 (2012a:39007), https://doi.org/10.1080/10236190903029241
  • [10] Boris Baeumer and Mark M. Meerschaert, Stochastic solutions for fractional Cauchy problems, Fract. Calc. Appl. Anal. 4 (2001), no. 4, 481-500. MR 1874479 (2003d:26006)
  • [11] Emilia G. Bazhlekova, Subordination principle for fractional evolution equations, Fract. Calc. Appl. Anal. 3 (2000), no. 3, 213-230. MR 1788162 (2001h:34088)
  • [12] Dumitru Baleanu, Kai Diethelm, Enrico Scalas, and Juan J. Trujillo, Fractional calculus: Models and numerical methods, Series on Complexity, Nonlinearity and Chaos, vol. 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2894576
  • [13] S. Calzadillas, C. Lizama, and J. G. Mesquita, A unified approach to discrete fractional calculus and applications, submitted.
  • [14] Jan Čermák, Tomáš Kisela, and Luděk Nechvátal, Stability and asymptotic properties of a linear fractional difference equation, Adv. Difference Equ. , posted on (2012), 2012:122, 14. MR 2972648, https://doi.org/10.1186/1687-1847-2012-122
  • [15] Jan Čermák, Tomáš Kisela, and Luděk Nechvátal, Stability regions for linear fractional differential systems and their discretizations, Appl. Math. Comput. 219 (2013), no. 12, 7012-7022. MR 3027865, https://doi.org/10.1016/j.amc.2012.12.019
  • [16] E. Cuesta and C. Palencia, A numerical method for an integro-differential equation with memory in Banach spaces: qualitative properties, SIAM J. Numer. Anal. 41 (2003), no. 4, 1232-1241 (electronic). MR 2034878 (2004m:65225), https://doi.org/10.1137/S0036142902402481
  • [17] Eduardo Cuesta, Christian Lubich, and Cesar Palencia, Convolution quadrature time discretization of fractional diffusion-wave equations, Math. Comp. 75 (2006), no. 254, 673-696 (electronic). MR 2196986 (2006j:65404), https://doi.org/10.1090/S0025-5718-06-01788-1
  • [18] Eduardo Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete Contin. Dyn. Syst., Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, suppl. (2007), 277-285. MR 2409222 (2009c:45032)
  • [19] Ioannis K. Dassios, Dumitru I. Baleanu, and Grigoris I. Kalogeropoulos, On non-homogeneous singular systems of fractional nabla difference equations, Appl. Math. Comput. 227 (2014), 112-131. MR 3146301, https://doi.org/10.1016/j.amc.2013.10.090
  • [20] J. B. Díaz and T. J. Osler, Differences of fractional order, Math. Comp. 28 (1974), 185-202. MR 0346352 (49 #11077)
  • [21] Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989 (2000i:47075)
  • [22] Rui Ferreira, Calculus of Variations on Time Scales and Discrete Fractional Calculus, Ph.D. thesis, Universidade de Aveiro, 2010.
  • [23] Rui A. C. Ferreira, Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one, J. Difference Equ. Appl. 19 (2013), no. 5, 712-718. MR 3049050, https://doi.org/10.1080/10236198.2012.682577
  • [24] Christopher S. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, Comput. Math. Appl. 61 (2011), no. 2, 191-202. MR 2754129 (2011m:39003), https://doi.org/10.1016/j.camwa.2010.10.041
  • [25] Christopher S. Goodrich, Existence of a positive solution to a system of discrete fractional boundary value problems, Appl. Math. Comput. 217 (2011), no. 9, 4740-4753. MR 2745153, https://doi.org/10.1016/j.amc.2010.11.029
  • [26] Christopher S. Goodrich, On a discrete fractional three-point boundary value problem, J. Difference Equ. Appl. 18 (2012), no. 3, 397-415. MR 2901829, https://doi.org/10.1080/10236198.2010.503240
  • [27] Christopher S. Goodrich, On a first-order semipositone discrete fractional boundary value problem, Arch. Math. (Basel) 99 (2012), no. 6, 509-518. MR 3001554, https://doi.org/10.1007/s00013-012-0463-2
  • [28] Henry L. Gray and Nien Fan Zhang, On a new definition of the fractional difference, Math. Comp. 50 (1988), no. 182, 513-529. MR 929549 (89i:39008), https://doi.org/10.2307/2008620
  • [29] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010 (2008g:00005)
  • [30] Michael T. Holm, The theory of discrete fractional calculus: development and applications, Ph.D. thesis, University of Nebraska, 2011.
  • [31] Michael T. Holm, The Laplace transform in discrete fractional calculus, Comput. Math. Appl. 62 (2011), no. 3, 1591-1601. MR 2824746 (2012g:44001), https://doi.org/10.1016/j.camwa.2011.04.019
  • [32] Fahd Jarad, Billur Kaymakçalan, and Kenan Taş, A new transform method in nabla discrete fractional calculus, Adv. Difference Equ. , posted on (2012), 2012:190, 17 pp.. MR 3029353, https://doi.org/10.1186/1687-1847-2012-190
  • [33] Valentin Keyantuo, Carlos Lizama, and Mahamadi Warma, Spectral criteria for solvability of boundary value problems and positivity of solutions of time-fractional differential equations, Abstr. Appl. Anal. (2013), Art. ID 614328, 11 pp. MR 3129328
  • [34] B. Kuttner, On differences of fractional order, Proc. London Math. Soc. (3) 7 (1957), 453-466. MR 0094618 (20 #1131)
  • [35] Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17 (1986), no. 3, 704-719. MR 838249 (87f:26006), https://doi.org/10.1137/0517050
  • [36] Ch. Lubich, I. H. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp. 65 (1996), no. 213, 1-17. MR 1322891 (96d:65207), https://doi.org/10.1090/S0025-5718-96-00677-1
  • [37] Mark M. Meerschaert, Jeff Mortensen, and Hans-Peter Scheffler, Vector Grünwald formula for fractional derivatives, Fract. Calc. Appl. Anal. 7 (2004), no. 1, 61-81. MR 2077400 (2005f:26018)
  • [38] Mark M. Meerschaert and Charles Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172 (2004), no. 1, 65-77. MR 2091131 (2005h:65138), https://doi.org/10.1016/j.cam.2004.01.033
  • [39] Kenneth S. Miller and Bertram Ross, Fractional difference calculus, Univalent functions, fractional calculus, and their applications (Kōriyama, 1988) Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989, pp. 139-152. MR 1199147 (93h:26010)
  • [40] M. D. Ortigueira, F. J. V. Coito, and J. J. Trujillo, Discrete-time differential systems, Signal Processing 107 (2015), 198-217.
  • [41] Yuanyuan Pan, Zhenlai Han, Shurong Sun, and Zhiqing Huang, The existence and uniqueness of solutions to boundary value problems of fractional difference equations, Math. Sci. (Springer) 6 (2012), Art. 7, 7 pp.. MR 2992832, https://doi.org/10.1186/2251-7456-6-7
  • [42] J. M. Sanz-Serna, A numerical method for a partial integro-differential equation, SIAM J. Numer. Anal. 25 (1988), no. 2, 319-327. MR 933727 (89d:65113), https://doi.org/10.1137/0725022
  • [43] S. Şengül, Discrete fractional calculus and its applications to tumor growth, Master thesis, Paper 161. http://digitalcommons.wku.edu/theses/161, 2010.
  • [44] Rong-Nian Wang, De-Han Chen, and Ti-Jun Xiao, Abstract fractional Cauchy problems with almost sectorial operators, J. Differential Equations 252 (2012), no. 1, 202-235. MR 2852204 (2012k:34015), https://doi.org/10.1016/j.jde.2011.08.048
  • [45] Xiao-yan Li and Wei Jiang, Solving fractional difference equations using the Laplace transform method, Abstr. Appl. Anal. , posted on (2014), Art. ID 230850, 6 pp.. MR 3176724, https://doi.org/10.1155/2014/230850
  • [46] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776 (21 #6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 39A13, 39A14, 39A06, 39A60, 47D06, 47D99

Retrieve articles in all journals with MSC (2010): 39A13, 39A14, 39A06, 39A60, 47D06, 47D99


Additional Information

Carlos Lizama
Affiliation: Departamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de Chile, Las Sophoras 173, Estación Central, Santiago, Chile
Email: carlos.lizama@usach.cl

DOI: https://doi.org/10.1090/proc/12895
Keywords: Fractional differences, abstract fractional difference equations, abstract fractional differential equations, Poisson distribution, $\alpha$-resolvent families
Received by editor(s): June 30, 2014
Received by editor(s) in revised form: June 27, 2015, July 8, 2015, and July 13, 2015
Published electronically: May 24, 2017
Additional Notes: The author was partially supported by FONDECYT grant number 1140258
Communicated by: Mark M. Meerschaert
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society