Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Separable quotients in $ C_{c}( X)$, $ C_{p}( X) $, and their duals


Authors: Jerzy Kakol and Stephen A. Saxon
Journal: Proc. Amer. Math. Soc. 145 (2017), 3829-3841
MSC (2010): Primary 46A08, 46A30, 54C35
DOI: https://doi.org/10.1090/proc/13360
Published electronically: May 24, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The quotient problem has a positive solution for the weak and strong duals of $ C_{c}\left ( X\right ) $ ($ X$ an infinite Tichonov space), for Banach spaces $ C_{c}\left ( X\right ) $, and even for barrelled $ C_{c}\left ( X\right ) $, but not for barrelled spaces in general. The solution is unknown for general $ C_{c}\left ( X\right ) $. A locally convex space is properly separable if it has a proper dense $ \aleph _{0}$-dimensional subspace. For $ C_{c}\left ( X\right ) $ quotients, properly separable coincides with infinite-dimensional separable. $ C_{c}\left ( X\right ) $ has a properly separable algebra quotient if $ X$ has a compact denumerable set. Relaxing compact to closed, we obtain the converse as well; likewise for $ C_{p}\left ( X\right ) $. And the weak dual of $ C_{p}\left ( X\right ) $, which always has an $ \aleph _{0}$-dimensional quotient, has no properly separable quotient when $ X$ is a P-space of a certain special form $ X=X_\kappa $


References [Enhancements On Off] (What's this?)

  • [1] S. A. Argyros, P. Dodos, and V. Kanellopoulos, Unconditional families in Banach spaces, Math. Ann. 341 (2008), no. 1, 15-38. MR 2377468, https://doi.org/10.1007/s00208-007-0179-y
  • [2] Henri Buchwalter and Jean Schmets, Sur quelques propriétés de l'espace $ C_{s}$ $ (T)$, J. Math. Pures Appl. (9) 52 (1973), 337-352 (French). MR 0333687
  • [3] J. Diestel, Sidney A. Morris, and Stephen A. Saxon, Varieties of linear topological spaces, Trans. Amer. Math. Soc. 172 (1972), 207-230. MR 0316992
  • [4] Lech Drewnowski and Robert H. Lohman, On the number of separable locally convex spaces, Proc. Amer. Math. Soc. 58 (1976), 185-188. MR 0417728
  • [5] Volker Eberhardt and Walter Roelcke, Über einen Graphensatz für lineare Abbildungen mit metrisierbarem Zielraum, Manuscripta Math. 13 (1974), 53-68 (German, with English summary). MR 0355517
  • [6] M. Eidelheit, Zur Theorie der Systeme Linearer Gleichungen, Studia Math. 6 (1936), 130-148.
  • [7] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
  • [8] S. Yu. Favorov, A generalized Kahane-Khinchin inequality, Studia Math. 130 (1998), no. 2, 101-107. MR 1623352
  • [9] J. C. Ferrando, Jerzy Kakol, and Stephen A. Saxon, The dual of the locally convex space $ C_p(X)$, Funct. Approx. Comment. Math. 50 (2014), no. 2, 389-399. MR 3229067, https://doi.org/10.7169/facm/2014.50.2.11
  • [10] J. C. Ferrando, Jerzy Kakol, and Stephen A. Saxon, Characterizing P-spaces $ X$ in terms of $ C_p(X)$, J. Convex Anal. 22 (2015), no. 4, 905-915. MR 3436693
  • [11] Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199
  • [12] Hans Jarchow, Locally convex spaces, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1981. MR 632257
  • [13] Jerzy Kakol, Wiesław Kubiś, and Manuel López-Pellicer, Descriptive topology in selected topics of functional analysis, Developments in Mathematics, vol. 24, Springer, New York, 2011. MR 2953769
  • [14] Jerzy Kakol, Stephen A. Saxon, and Aaron R. Todd, Pseudocompact spaces $ X$ and $ df$-spaces $ C_c(X)$, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1703-1712 (electronic). MR 2051131, https://doi.org/10.1090/S0002-9939-04-07279-X
  • [15] Jerzy Kakol, Stephen A. Saxon, and Aaron R. Todd, The analysis of Warner boundedness, Proc. Edinb. Math. Soc. (2) 47 (2004), no. 3, 625-631. MR 2097264, https://doi.org/10.1017/S001309150300066X
  • [16] Jerzy Kakol, Stephen A. Saxon, and Aaron R. Todd, Barrelled spaces with(out) separable quotients, Bull. Aust. Math. Soc. 90 (2014), no. 2, 295-303. MR 3252012, https://doi.org/10.1017/S0004972714000422
  • [17] Mark Krein and Selim Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 427-430. MR 0003453
  • [18] W. Lehner, Über die Bedeutung gewisser Varianten des Baire'schen Kategorienbegriffs für die Funktionenräume $ C_{c}\left ( T\right ) $, Dissertation, Ludwig-Maximilians-Universität, München, 1979.
  • [19] Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, Notas de Matemática [Mathematical Notes], 113, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. MR 880207
  • [20] M. M. Popov, Codimension of subspaces of $ L_{p}(\mu )$ for $ p<1$, Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 94-95 (Russian). MR 745720
  • [21] W. J. Robertson, On properly separable quotients of strict (LF) spaces, J. Austral. Math. Soc. Ser. A 47 (1989), no. 2, 307-312. MR 1008844
  • [22] Haskell P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $ L^{p}\,(\mu )$ to $ L^{r}\,(\nu )$, J. Functional Analysis 4 (1969), 176-214. MR 0250036
  • [23] Stephen A. Saxon, Every countable-codimensional subspace of an infinite-dimensional (nonnormable) Fréchet space has an infinite-dimensional Fréchet quotient (isomorphic to $ \omega $), Bull. Polish Acad. Sci. Math. 39 (1991), no. 3-4, 161-166. MR 1194484
  • [24] Stephen A. Saxon, Weak barrelledness versus P-spaces, Descriptive topology and functional analysis, Springer Proc. Math. Stat., vol. 80, Springer, Cham, 2014, pp. 27-32. MR 3238201, https://doi.org/10.1007/978-3-319-05224-3_2
  • [25] Stephen A. Saxon, Mackey hyperplanes/enlargements for Tweddle's space, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), no. 2, 1035-1054. MR 3249992, https://doi.org/10.1007/s13398-013-0159-x
  • [26] Stephen A. Saxon, $ (LF)$-spaces with more-than-separable quotients, J. Math. Anal. Appl. 434 (2016), no. 1, 12-19. MR 3404545, https://doi.org/10.1016/j.jmaa.2015.09.005
  • [27] Stephen Saxon and Mark Levin, Every countable-codimensional subspace of a barrelled space is barrelled, Proc. Amer. Math. Soc. 29 (1971), 91-96. MR 0280972
  • [28] Stephen A. Saxon and P. P. Narayanaswami, Metrizable (LF)-spaces, (db)-spaces, and the separable quotient problem, Bull. Austral. Math. Soc. 23 (1981), no. 1, 65-80. MR 615133, https://doi.org/10.1017/S0004972700006900
  • [29] S. A. Saxon and L. M. Sánchez Ruiz, Reinventing weak barrelledness, Journal of Convex Analysis 24 (2017), no. 3.
  • [30] Stephen A. Saxon and Albert Wilansky, The equivalence of some Banach space problems, Colloq. Math. 37 (1977), no. 2, 217-226. MR 0511780
  • [31] Wiesław Śliwa, The separable quotient problem and the strongly normal sequences, J. Math. Soc. Japan 64 (2012), no. 2, 387-397. MR 2916073
  • [32] Manuel Valdivia, On weak compactness, Studia Math. 49 (1973), 35-40. MR 0333644
  • [33] Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 46A08, 46A30, 54C35

Retrieve articles in all journals with MSC (2010): 46A08, 46A30, 54C35


Additional Information

Jerzy Kakol
Affiliation: Faculty of Mathematics and Informatics, A. Mickiewicz University, 60-769 Poznań, Matejki 48-49, Poland – and Institute of Mathematics, Czech Academy of Sciences, Zitna 25, Prague, Czech Republic
Email: kakol@math.amu.edu.pl

Stephen A. Saxon
Affiliation: Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville, Florida 32611-8105
Email: stephen_saxon@yahoo.com

DOI: https://doi.org/10.1090/proc/13360
Keywords: (Properly) separables quotients, $C( X) $, weak barrelledness, P-spaces
Received by editor(s): May 3, 2016
Received by editor(s) in revised form: June 1, 2016, and June 21, 2016
Published electronically: May 24, 2017
Additional Notes: Thanks to Professor Aaron R. Todd for vital discussions/encouragement/prequels.
The first author’s research was supported by Generalitat Valenciana, Conselleria d’Educació, Cultura i Esport, Spain, grant PROMETEO/2013/058, and by GACR grant 16-34860L and RVO 67985840 (Czech Republic).
Communicated by: Thomas Schlumprecht
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society