Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Minimal dilatation in Penner's construction


Author: Livio Liechti
Journal: Proc. Amer. Math. Soc. 145 (2017), 3941-3951
MSC (2010): Primary 37E30
DOI: https://doi.org/10.1090/proc/13521
Published electronically: May 24, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For all orientable closed surfaces, we determine the minimal dilatation among mapping classes arising from Penner's construction. We also discuss generalisations to surfaces with punctures.


References [Enhancements On Off] (What's this?)

  • [1] Norbert A'Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976), no. 1, 61-67 (French). MR 0424967
  • [2] Norbert A'Campo, Planar trees, slalom curves and hyperbolic knots, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 171-180 (1999). MR 1733330
  • [3] E. Hironaka, Mapping classes associated to mixed-sign Coxeter graphs, http://arxiv.org/abs/1110.1013.
  • [4] Eriko Hironaka and Livio Liechti, On Coxeter mapping classes and fibered alternating links, Michigan Math. J. 65 (2016), no. 4, 799-812. MR 3579186, https://doi.org/10.1307/mmj/1480734020
  • [5] Christopher J. Leininger, On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number, Geom. Topol. 8 (2004), 1301-1359 (electronic). MR 2119298, https://doi.org/10.2140/gt.2004.8.1301
  • [6] Robert C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988), no. 1, 179-197. MR 930079, https://doi.org/10.2307/2001116
  • [7] Dale Rolfsen, Knots and links, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. MR 0515288
  • [8] Hyunshik Shin and Balázs Strenner, Pseudo-Anosov mapping classes not arising from Penner's construction, Geom. Topol. 19 (2015), no. 6, 3645-3656. MR 3447112, https://doi.org/10.2140/gt.2015.19.3645
  • [9] Robert Steinberg, Finite reflection groups, Trans. Amer. Math. Soc. 91 (1959), 493-504. MR 0106428
  • [10] Balazs Strenner, Algebraic degrees and Galois conjugates of pseudo-Anosov stretch factors, ProQuest LLC, Ann Arbor, MI, 2015. Thesis (Ph.D.)-The University of Wisconsin - Madison. MR 3427250
  • [11] William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431. MR 956596, https://doi.org/10.1090/S0273-0979-1988-15685-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 37E30

Retrieve articles in all journals with MSC (2010): 37E30


Additional Information

Livio Liechti
Affiliation: Mathematisches Institut, Universität Bern, Silderstrasse 5, CH-3012 Bern, Switzerland
Email: livio.liechti@math.unibe.ch

DOI: https://doi.org/10.1090/proc/13521
Received by editor(s): March 22, 2016
Received by editor(s) in revised form: September 28, 2016
Published electronically: May 24, 2017
Additional Notes: The author was supported by the Swiss National Science Foundation (project no. 159208)
Communicated by: David Futer
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society