Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

Request Permissions   Purchase Content 
 
 

 

Ends of unimodular random manifolds


Authors: Ian Biringer and Jean Raimbault
Journal: Proc. Amer. Math. Soc. 145 (2017), 4021-4029
MSC (2010): Primary 53C99
DOI: https://doi.org/10.1090/proc/13531
Published electronically: March 23, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the space of ends of a unimodular random manifold, a random object that generalizes finite volume manifolds, random leaves of measured foliations and invariant random subgroups of isometry groups of Riemannian manifolds. As an application, we give a quick proof of a variant of a theorem of E. Ghys (1995) on the topology of random leaves.


References [Enhancements On Off] (What's this?)

  • [1] Miklós Abért, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean Raimbault, and Iddo Samet, On the growth of $ {L}^2$-invariants for sequences of lattices in Lie groups, arXiv:1210.2961 (2012).
  • [2] Miklós Abért and Ian Biringer, Unimodular measures on the space of all Riemannian manifolds, https://arxiv.org/abs/1606.03360 (2016).
  • [3] Miklós Abért, Yair Glasner, and Bálint Virág, Kesten's theorem for invariant random subgroups, Duke Math. J. 163 (2014), no. 3, 465-488. MR 3165420, https://doi.org/10.1215/00127094-2410064
  • [4] David Aldous and Russell Lyons, Processes on unimodular random networks, Electron. J. Probab. 12 (2007), no. 54, 1454-1508. MR 2354165, https://doi.org/10.1214/EJP.v12-463
  • [5] Jesús A. Álvarez López and Alberto Candel, Turbulent relations (2012).
  • [6] -, Generic coarse geometry of leaves (2014).
  • [7] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Group-invariant percolation on graphs, Geom. Funct. Anal. 9 (1999), no. 1, 29-66. MR 1675890, https://doi.org/10.1007/s000390050080
  • [8] Itai Benjamini and Oded Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab. 6 (2001), no. 23, 13 pp. (electronic). MR 1873300, https://doi.org/10.1214/EJP.v6-96
  • [9] Miguel Bermúdez and Gilbert Hector, Laminations hyperfinies et revêtements, Ergodic Theory Dynam. Systems 26 (2006), no. 2, 305-339 (French, with English and French summaries). MR 2218763, https://doi.org/10.1017/S0143385705000519
  • [10] Alberto Candel and Lawrence Conlon, Foliations. II, Graduate Studies in Mathematics, vol. 60, American Mathematical Society, Providence, RI, 2003. MR 1994394
  • [11] John Cantwell and Lawrence Conlon, Endsets of leaves, Topology 21 (1982), no. 4, 333-352. MR 670740, https://doi.org/10.1016/0040-9383(82)90016-7
  • [12] John Cantwell and Lawrence Conlon, Generic leaves, Comment. Math. Helv. 73 (1998), no. 2, 306-336. MR 1611711, https://doi.org/10.1007/s000140050057
  • [13] John Cantwell and Lawrence Conlon, Endsets of exceptional leaves; a theorem of G. Duminy, Foliations: geometry and dynamics (Warsaw, 2000) World Sci. Publ., River Edge, NJ, 2002, pp. 225-261. MR 1882772, https://doi.org/10.1142/9789812778246_0011
  • [14] Jeff Cheeger and Mikhael Gromov, Chopping Riemannian manifolds, Differential geometry, Pitman Monogr. Surveys Pure Appl. Math., vol. 52, Longman Sci. Tech., Harlow, 1991, pp. 85-94. MR 1173034
  • [15] Hans Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), no. 1, 692-713 (German). MR 1545233, https://doi.org/10.1007/BF01174375
  • [16] Étienne Ghys, Topologie des feuilles génériques, Ann. of Math. (2) 141 (1995), no. 2, 387-422 (French). MR 1324140, https://doi.org/10.2307/2118526
  • [17] R. I. Grigorchuk, Topological and metric types of surfaces that regularly cover a closed surface, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 3, 498-536, 671 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 3, 517-553. MR 1013710
  • [18] Olle Häggström, Infinite clusters in dependent automorphism invariant percolation on trees, Ann. Probab. 25 (1997), no. 3, 1423-1436. MR 1457624, https://doi.org/10.1214/aop/1024404518
  • [19] Gilbert Hector, Shigenori Matsumoto, and Gaël Meigniez, Ends of leaves of Lie foliations, J. Math. Soc. Japan 57 (2005), no. 3, 753-779. MR 2139733
  • [20] Heinz Hopf, Enden offener Räume und unendliche diskontinuierliche Gruppen, Comment. Math. Helv. 16 (1944), 81-100 (German). MR 0010267
  • [21] Jean Raimbault, Géométrie et topologie des variétés hyperboliques de grand volume, Séminaire de Théorie spectrale et géométrie (Grenoble) 31 (2012-2014).
  • [22] Ian Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259-269. MR 0143186
  • [23] A. M. Vershik, Totally nonfree actions and the infinite symmetric group, Mosc. Math. J. 12 (2012), no. 1, 193-212, 216 (English, with English and Russian summaries). MR 2952431
  • [24] Paweł Walczak, Dynamics of foliations, groups and pseudogroups, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 64, Birkhäuser Verlag, Basel, 2004. MR 2056374

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 53C99

Retrieve articles in all journals with MSC (2010): 53C99


Additional Information

Ian Biringer
Affiliation: Department of Mathematics, Boston College, Chestnut Hill, Massachusetts 02467
Email: biringer@bc.edu

Jean Raimbault
Affiliation: Institut de mathématiques de Toulouse, Université Paul Sabatier, F-31062 Toulouse Cedex 9, France
Email: Jean.Raimbault@math.univ-toulouse.fr

DOI: https://doi.org/10.1090/proc/13531
Received by editor(s): July 5, 2016
Received by editor(s) in revised form: September 26, 2016, and September 28, 2016
Published electronically: March 23, 2017
Communicated by: David Futer
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society