Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Expected dimensions of higher-rank Brill-Noether loci

Author: Naizhen Zhang
Journal: Proc. Amer. Math. Soc. 145 (2017), 3735-3746
MSC (2010): Primary 14D20, 14H10, 14H51, 14H60
Published electronically: March 23, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove a new expected dimension formula for certain rank two Brill-Noether loci with fixed special determinant. This answers a question asked by Osserman and also leads to a new and much simpler proof of a theorem in his 2015 work. Our result generalizes the well-known result by Bertram, Feinberg and independently Mukai on expected dimension of rank two Brill-Noether loci with canonical determinant and partially verifies a conjecture (in rank two) of Grzegorczyk and Newstead on coherent systems.

References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
  • [2] A. Bertram and B. Feinberg, On stable rank two bundles with canonical determinant and many sections, Algebraic geometry (Catania, 1993/Barcelona, 1994) Lecture Notes in Pure and Appl. Math., vol. 200, Dekker, New York, 1998, pp. 259-269. MR 1651099
  • [3] S. B. Bradlow, O. García-Prada, V. Muñoz, and P. E. Newstead, Coherent systems and Brill-Noether theory, Internat. J. Math. 14 (2003), no. 7, 683-733. MR 2001263,
  • [4] D. Gieseker, Stable curves and special divisors: Petri's conjecture, Invent. Math. 66 (1982), no. 2, 251-275. MR 656623,
  • [5] I. Grzegorczyk and P. E. Newstead, On coherent systems with fixed determinant, Internat. J. Math. 25 (2014), no. 5, 1450045, 11. MR 3215221,
  • [6] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [7] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556
  • [8] H. Lange, P. Newstead, and S. Park, Non-emptiness of Brill-Noether Loci in $ {M}(2,k)$, arXiv:1311.5007 (2013).
  • [9] Shigeru Mukai, Vector bundles and Brill-Noether theory, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 145-158. MR 1397062
  • [10] Brian Osserman, Brill-Noether loci with fixed determinant in rank 2, Internat. J. Math. 24 (2013), no. 13, 1350099, 24. MR 3158575,
  • [11] Brian Osserman, Special determinants in higher-rank Brill-Noether theory, Internat. J. Math. 24 (2013), no. 11, 1350084, 20. MR 3143603,
  • [12] Montserrat Teixidor i Bigas, Rank two vector bundles with canonical determinant, Math. Nachr. 265 (2004), 100-106. MR 2033069,
  • [13] Naizhen Zhang, Towards the Bertram-Feinberg-Mukai conjecture, J. Pure Appl. Algebra 220 (2016), no. 4, 1588-1654. MR 3423466,

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 14D20, 14H10, 14H51, 14H60

Retrieve articles in all journals with MSC (2010): 14D20, 14H10, 14H51, 14H60

Additional Information

Naizhen Zhang
Affiliation: Department of Mathematics, University of California, Davis, One Shields Avenue, Davis, California 95616

Received by editor(s): October 26, 2015
Received by editor(s) in revised form: July 28, 2016, and October 11, 2016
Published electronically: March 23, 2017
Communicated by: Lev Borisov
Article copyright: © Copyright 2017 Retained by the author

American Mathematical Society