Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On a theorem of A. I. Popov on sums of squares


Authors: Bruce C. Berndt, Atul Dixit, Sun Kim and Alexandru Zaharescu
Journal: Proc. Amer. Math. Soc. 145 (2017), 3795-3808
MSC (2010): Primary 11E25; Secondary 33C10
DOI: https://doi.org/10.1090/proc/13547
Published electronically: April 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ r_k(n)$ denote the number of representations of the positive integer $ n$ as the sum of $ k$ squares. In 1934, the Russian mathematician A. I. Popov stated, but did not rigorously prove, a beautiful series transformation involving $ r_k(n)$ and certain Bessel functions. We provide a proof of this identity for the first time, as well as for another identity, which can be regarded as both an analogue of Popov's identity and an identity involving $ r_2(n)$ from Ramanujan's lost notebook.


References [Enhancements On Off] (What's this?)

  • [1] G. Bereczki, A. I. Popov (1899-1973) (in Hungarian), Nyelvtudományi Közlemények (Communications in Linguistics) 76 (1974), 429-430.
  • [2] Bruce C. Berndt, Identities involving the coefficients of a class of Dirichlet series. V, VI, Trans. Amer. Math. Soc. 160 (1971), 139-156; ibid. 160 (1971), 157-167. MR 0280693
  • [3] Bruce C. Berndt, Sun Kim, and Alexandru Zaharescu, Weighted divisor sums and Bessel function series, II, Adv. Math. 229 (2012), no. 3, 2055-2097. MR 2871168, https://doi.org/10.1016/j.aim.2011.10.016
  • [4] Bruce C. Berndt, Sun Kim, and Alexandru Zaharescu, Weighted divisor sums and Bessel function series, IV, Ramanujan J. 29 (2012), no. 1-3, 79-102. MR 2994091, https://doi.org/10.1007/s11139-011-9352-8
  • [5] Bruce C. Berndt, Sun Kim, and Alexandru Zaharescu, Weighted divisor sums and Bessel function series, III, J. Reine Angew. Math. 683 (2013), 67-96. MR 3181548
  • [6] Bruce C. Berndt, Sun Kim, and Alexandru Zaharescu, Circle and divisor problems, and double series of Bessel functions, Adv. Math. 236 (2013), 24-59. MR 3019715, https://doi.org/10.1016/j.aim.2012.11.017
  • [7] Bruce C. Berndt and Alexandru Zaharescu, Weighted divisor sums and Bessel function series, Math. Ann. 335 (2006), no. 2, 249-283. MR 2221114, https://doi.org/10.1007/s00208-005-0734-3
  • [8] K. Chandrasekharan and Raghavan Narasimhan, Hecke's functional equation and arithmetical identities, Ann. of Math. (2) 74 (1961), 1-23. MR 0171761
  • [9] Harold Davenport, Multiplicative number theory, 3rd ed., revised and with a preface by Hugh L. Montgomery, Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. MR 1790423
  • [10] A. L. Dixon and W. L. Ferrar, Some summations over the lattice points of a circle (I), Quart. J. Math. 1 (1934), 48-63.
  • [11] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 5th ed., translation edited and with a preface by Alan Jeffrey, Academic Press, Inc., Boston, MA, 1994. MR 1243179
  • [12] N. S. Koshliakov, Application of the theory of sum-formulae to the investigation of a class of one-valued analytical functions in the theory of numbers, Mess. Math. 58 (1928), 1-23.
  • [13] N. S. Koshliakov, Sum-formulae containing numerical functions, J. Soc. Phys.-Math. Leningrad 2 (1928), 53-76.
  • [14] A. Popov, On some summation formulas (in Russian), Bull. Acad. Sci. L'URSS 7 (1934), 801-802.
  • [15] V. Popov, A physicist and a poet: Brilliant Russian scientist Alexander Popov reached scientific heights in Mathematics and Finno-Ugric studies, Nov. 24, 2012, http://www.gazeta-respublika.ru/article.php/54381respublika.ru/article.php/54381
  • [16] Srinivasa Ramanujan, The lost notebook and other unpublished papers, with an introduction by George E. Andrews, Springer-Verlag, Berlin; Narosa Publishing House, New Delhi, 1988. MR 947735
  • [17] Nico M. Temme, Special functions, An introduction to the classical functions of mathematical physics, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996. MR 1376370
  • [18] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 11E25, 33C10

Retrieve articles in all journals with MSC (2010): 11E25, 33C10


Additional Information

Bruce C. Berndt
Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
Email: berndt@illinois.edu

Atul Dixit
Affiliation: Department of Mathematics, Indian Institute of Technology, Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
Email: adixit@iitgn.ac.in

Sun Kim
Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801
Email: sunkim2@illinois.edu

Alexandru Zaharescu
Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801 – and – Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1–764, RO–014700 Bucharest, Romania
Email: zaharesc@illinois.edu

DOI: https://doi.org/10.1090/proc/13547
Keywords: Sums of squares, Bessel functions, Vorono\"{\i} summation formula, Dirichlet series, Dirichlet characters, Ramanujan's lost notebook
Received by editor(s): October 18, 2016
Published electronically: April 7, 2017
Communicated by: Mourad Ismail
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society